
1

ESP32 workshop
For the class of 2022

Kajimoto Laboratory

ver. 1 2017.12.16

ver.2 2018.12.1

ver.3 2020 2.13

ver.4 2021 12.6

ver.5 2022

Change Log

Ver2:Bluetooth and Wi-Fi content change.

Ver.3: RC servo library change, DC motor control issue change, note about PWM, WiFi

and multitasking are added.

Ver.4: Minor corrections

Ver.5: Encoder library relation correction.

1 Introduction
We will utilize ESP32-DevKitC (ESP32 is the name of the core chip). The library is

updated daily, so there is always a possibility that the method in this document is out of

date. The program on the PC side uses Processing in the course.

 Figure. 1 ESP32-DevKitC Pin Assignment (https://github.com/espressif/arduino-

esp32/blob/master/docs/esp32_pinmap.png)

Available at: https://akizukidenshi.com/catalog/g/gM-15673/

 Breadboard:.http://akizukidenshi.com/catalog/g/gP-12366/ (6 rows instead of the

2

usual 5 rows. Because this kit is wider)

1.1 How to proceed with the assignment

 Chapter2 "Flashing LEDs": Flashing LEDs.

 Chapter3 "External switch": Input by external switch. Interrupt practice.

 Chapter 4 "Analog Input": Using analog input with the accelerometer as an example.

 Chapter 5 "Driving the RC Servo Motor": Drive the RC (radio-controlled) servo motor.

 Chapter6 "Analog output": Use the built-in DA converter.

 7 Chapter 3 "SPI Communication": Expansion of DA conversion port as an example

of port expansion by SPI communication.

 Chapter 8 "DC Motor Control": PD control of DC motor with H-bridge IC and encoder

attached to the motor.

 Chapter9 "Data Logging": Practical data logging using Processing.

 Chapter10 "Wireless Communication": Running the Wi-Fi and Bluetooth

communication samples.

1.2 report

Write a report at the end. Corrections will be made.

 The course is also a Microsoft-Word course, so please be sure to use the reference

functions such as references to figure/table numbers. The Word training will be held

in the middle of the workshop.

 Put up diagrams (especially oscilloscope screen captures) obtained during the

experiment.

 Do the experiment while writing the report. This is the same in research situations.

Document data in real time. Always take photos and videos. It is wrong to take a

picture only when you write a paper.

 Submitted reports will be corrected and circulated throughout the lab.

2 LED Flashing
Set up the development environment and drive external LEDs.

 Using Arduino IDE, install ESP32 Dev Module library. Please search and check.

 Note the following points about the digital input/output of ESP32.

 GPIO1 and 3 are used for serial communication.

 GPIO6 to 11 are used internally, so their use is not recommended.

3

 GPIO34,35,36,39 are for input only

 As described later, GPIO0 doesn't go well with AD conversion.

 LED polarity should be checked with a tester.

 The resistor (limiting resistor) connected in series with the LED is set to 1k-OHM

here, but it must be able to be calculated because the power supply voltage may vary.

The calculation method of the resistance value is described in the following links, so

learn it by yourself. If it is not a special one, 1 to 10mA flows roughly.

 http://www.ops.dti.ne.jp/~ishijima/sei/letselec/letselec11.htm

 The color code of the resistor should be readable.

 Breadboard is used here. When you remove it, use a flathead screwdriver etc.

because it will be damaged if force is applied to the USB connector etc.

 The same net name in the schematic indicates that they are connected. For example,

in the case of Figure. 2 the two "GND" are connected.

[課題1] Measure the electrical current through the LED (measure the voltage across the

resistor and calculate it using Ohm's law). Is the value reasonable compared to the

prediction obtained by the calculation method described above?

4

 Figure. 2 LED Flashing Source and Circuit

3 External switch
 External switch input is setup. (note that the ESP32 board also has an input switch).

Refer to Figure 3. 3 Check the conductivity of the tact switch with a tester when it is

pressed.

[課題2] Consider why a resistor is needed in a switch circuit. In the sample circuit

shown below, what will be the logic input when the button is pressed?

[課題3] Make the LED light up when the tact switch is pressed (use digitalRead

function)

[課題4] Learn about interrupt programming and modify your program to use interrupts.

Make the LED blink every time the switch is pressed (use attachInterrupt function)

 Reference http://gammon.com.au/interrupts

 You should find that the blinking does not work perfectly as expected due to

"chattering" of the switch. Google search "anti-chatter" and try the capacitor method

or the software method.

[課題5] The status of the switch is transmitted to PC by serial communication. For

example, you can use serial communication software (RealTerm, TeraTerm, etc...) to

send character "a" when the switch is pressed and "b" when the switch is not pressed.

You can also use the monitor function of Arduino IDE.)

5

RealTerm http://realterm.sourceforge.net/

TeraTerm http://sourceforge.jp/projects/ttssh2/

 Figure 3. 3 Tact switch circuit part

4 Accelerometer
The KXR94-2050 module (http://akizukidenshi.com/catalog/g/gM-05153/) is used. This

module provides analog output of 3-axis acceleration, so it should be received by 3 AD

ports.

The function is analogRead, and the parameter of the function is not the channel number

(0-19) of AD, but the GPIO number. For example, AD10 is not No. 10 but No. 4 (this is

also true for DA, SPI, etc.).

When this accelerometer is connected to 3.3V power supply, the offset is 1.65V and there

6

is a change of 0.66V when 1G is applied. In other words, the output varies from 0.99V to

2.31V in the range of gravity acceleration. The AD conversion of ESP32 allocates 0 to

3.6V to 0 to 4095 (12bit) by default. Note that this is different from the normal Arduino

output (10bit).

ESP32 has some limitations on AD conversion, for example, some channels cannot be

used when using Wi-Fi function. Also, the attenuation function can change the

measurement voltage range. http://trac.switch-science.com/wiki/esp32_tips

[課題6] Confirm that the values read by the PC are valid. Because of the existence of

gravitational acceleration, the sensor value of an axis should be +1G in one direction

and -1G in the opposite direction. What kind of value is actually changing? Is it

reasonable?

 (note: AD conversion of GPIO0 does not seem to go well. Use another port.

 (http://esp-idf.readthedocs.io/en/latest/api-reference/peripherals/adc.html)

7

 Figure. 4 Accelerometer circuit and source sample (note: GPIO0 is changed to

another port. http://esp-idf.readthedocs.io/en/latest/api-reference/peripherals/adc.html)

5 RC servo motor drive (PWM)
PWM output is used to drive RC (radio-controlled) servo motors.

ESP32 is not soldered directly to the board, but a socket is used. The RC servo motors

need high current to drive the servo motors and USB power supply is not enough.

 Figure. 5 Socket (this example is a separate project)

 Use tinned wire or junflon wire for wiring. Do not use unnecessarily thick wires.

However, use thick wires for the part driving the motor and the power supply part.

 Refer to the following link or "Elements of Electronics" for soldering method.

 How to solder http://www.youtube.com/watch?v=S5f7jueQHr8

 Good soldering geometry, etc. https://godhanda.co.jp/blog/kisokouza08/

Study control methods for PWM and RC servo motors

 http://berry.sakura.ne.jp/technics/servo_control_p1.html

8

 http://startelc.com/H8/H8_17RCserv.html

Use the RC servo library of ESP32.

https://wak-tech.com/archives/1534

https://github.com/RoboticsBrno/ServoESP32

 Next, connect the RC servo motor to the power supply as shown in Figure 6 Connect

the RC servo motor and the power supply as shown in Figure 6. In this circuit diagram,

the 5V output of the AC adapter is connected to the 5V input terminal of ESP32. This

makes it possible to operate without USB power supply. Do not forget to connect GND of

AC adapter and GND of ESP32.

 Figure 6 RC Servo Circuit

[課題7] Control the servo motor posture by serial communication from PC. For example,

you can use serial communication software on PC side. Observe the PWM signal

with an oscilloscope. ("Observe with oscilloscope" means to capture the screen with

oscilloscope and attach it to the report. For how to use the oscilloscope, refer to the

following documents: http://download.tek.com/document/55Z-17291-3.pdf

http://download.tek.com/document/3GZ-24924-0.pdf You should know how to use

Trigger function)

9

 The Serial.available function is used to wait for input from the PC in serial

communication. Figure. 7 Shows typical example.

 Figure. 7 RC Servo and Serial Communication

6 Analog output (+ operational amplifier)
ESP32 has 2 channels of 8bit DA converter. The usual Arduino environment has

analogWrite function as analog output, but this is a pseudo analog output by PWM. On

the other hand, ESP32 can actually convert DA output.

[課題8] As shown in Figure. 8 the DA output is performed using the dacWrite function

as shown in Figure 7, and the output waveform is checked with an oscilloscope. In

this example, the output is from GPIO25 (DAC1). Consider what kind of waveform

it is. Find the period and frequency of the waveform and the loop period.

 Figure. 8 Analog output by dacWrite function

 Driving earphones as an exercise in operational amplifier circuitry (Figure. 9). In this

circuit the following is done.

① The DC component of the input signal from the DA is cut off by the high-pass filter

with C1 and R1.

② It is amplified by the inverting amplification circuit of operational amplifier

10

(NJM4580 manufactured by New Japan Radio). The amplification ratio is specified

by R1 and R4.

③ Offset voltage at amplification is set by R2 and R3 and input to V+ of op-amp.

④ The DC component of the output is cut by the high-pass filter by C3 and the

resistance of the earphone.

⑤ Output from earphone jack to earphones or speakers.

 Note the polarity of the electrolytic capacitor. The + side should be the output side

of the op-amp

 Use the type of earphone jack that can be directly attached to the board. In case of

stereo jack, be careful about the polarity.

 You should learn how to read the numerical code for the capacitor.

 http://www.jarl.org/Japanese/7_Technical/lib1/konden.htm

Learn about operational amplifier circuits on your own in the following and other places.

http://picavr.uunyan.com/op_amp.html

https://www.analog.com/jp/education/landing-pages/003/opamp-application-

handbook.html (Note: Too high level for this course)

https://kaji-

lab.jp/ja/index.php?plugin=attach&pcmd=open&file=OpAmpIntro.pdf&refer=people%2

Fkaji

The output from the ESP32 DAC can also be used to play earphones directly, and if that

is the only purpose, an operational amplifier circuit is not necessary.

11

 Figure. 9 Analog Output and Operational Amplifier Circuit

[課題9] What is the amplification value of this inverting amplifier for the resistor values

and capacitor capacitance? What is the expected voltage input from 0 to 3.3 V. What

is the cutoff frequency due to the high-pass filter by C1 and R1 (e.g.

http://sim.okawa-denshi.jp/CRhikeisan.htm). If the resistance of the earphone is 32-

OHM, what is the cutoff frequency due to the high-pass filter by C3 and the

earphone?

Note that in a typical audio circuit like this, the characteristics of the high-pass filter

are determined only when a load such as earphones or speakers is connected. It is a

typical error to measure without a load connected and the waveform is different from the

expected one.

[課題10] Create an actual circuit and listen to the input waveform (Do not use

expensive earphones, as they may break the earphone!) Also, check the output

waveform using an oscilloscope. The waveform should be different from the

waveform of the DA port. How and why it is different (hint: positive/negative

12

amplification factor, non-rail-to-rail)

[課題11] Control the sound of the earphone by serial communication from PC. When

keys 1 to 8 are pressed, sound 1-8 is sent, sound "do-re-mi-fa-so-la-ti-do" is sounded.

Here, we use micros function to realize precise frequency wave. The micros function

returns the time in microseconds from the start of the program to the current time.

For example, if you want to make a sound with a frequency of f[Hz], you should

output a wave of sin(2πft). A sample of outputting a sine wave is shown in Figure.

10 Check the waveforms with an oscilloscope. If you observe it in detail, you should

see a staircase waveform. Find the time taken for one cycle of the loop function from

here.

 Figure. 10 Sinusoidal output using micros function

7 External DA (SPI communication for port extension)
ESP32 has several SPI communication modules. By using them, you can expand the

ports. In this section, 8ch 10bit D/A port is realized.

Self-study on SPI communication in the following. It is assumed that you understand

the shift register.

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

 The LTC1660CN 8-channel 10-bit D/A converter is used as an external DA converter

(Figure 11). This exercise is also an exercise in reading the datasheet.

Put a capacitor for voltage stabilization between power supply and ground of DA

converter. 10pin terminal is used and extra 2pin is 5V with ground.

http://akizukidenshi.com/catalog/g/gI-02794/

13

ESP32 has three kinds of SPI communication modules, SPI, VSPI and HSPI. SPI is used

for communication with internal flash memory, and the Arduino environment uses one

of them (VSPI, HSPI).

http://trac.switch-science.com/wiki/esp32_tips

https://www.mgo-tec.com/blog-entry-esp32-oled-ssd1331.html

https://www.mgo-tec.com/blog-entry-esp32-spimode-hspi-vspi-hispeed.html

https://github.com/espressif/arduino-

esp32/commit/3198f25c19105ff933da4fdb33f132304bb3afaf

 Figure 11 8ch DA port circuit (10 pins are used and the extra 2 pins are ground and

5V)

14

[課題12] Run the following sample program and observe the waveforms using an

oscilloscope. Next, observe the clock signal and the data signal at the same time

(using the CS pin as the trigger signal. (The program uses two probes and the CS

pin as the trigger signal.)

 http://download.tek.com/document/55Z-17291-3.pdf

http://download.tek.com/document/3GZ-24924-0.pdf

 What is the relationship between the timing of the two signals? Are they reasonable

compared to the timing chart in the LTC1660 datasheet?

 What is the relationship between the 16-bit data signals and the program? How do

the 16-bit data signals relate to the program and are they appropriate compared to

the LTC1660 datasheet?

 Figure. 12 Sample of running 8ch D/A converter LTC1660.

15

 Figure. 13 Observation of control signal

[課題13] Create your own function that can output a voltage to a channel, such as

void DAout(char channel, float voltage)

 While looking at the LTC1660 datasheet, think about how to specify the channel.

The voltage can be specified as a float from 0.0 to 5.0. Then, output sine waves of

different frequencies from each of the 8 channels, and observe the waveforms with

an oscilloscope. It takes time to calculate the sin function for 8 channels in real

time, which may slow down the loop cycle. To solve this problem, create a table

(array) of output data in the setup function in advance.

8 DC Motor Control
In this section, we drive a DC motor (RE25, 10W, 118746) manufactured by MAXON.

The DC motor is equipped with an encoder (HEDS5540, 500 CPR (count per revolution))

to measure and control the position. For output, the H-bridge IC BD6222HFP is used.

Self-study encoders. Especially understand the quadruplicated mode.

http://ednjapan.com/edn/articles/1203/16/news012_2.html

https://www.sk-solution.co.jp/html/qa/qad001c00820090629163814.html

There is a large list of encoders in the Arduino environment below.

https://playground.arduino.cc/Main/RotaryEncoders

The following are used in this case.

https://www.arduino.cc/reference/en/libraries/esp32encoder/

16

Connect 5V, GND, and channels A and B as shown in Figure 13. Each output channel

should be connected to the 5V power supply with a 3.3k ohm resistor (this is called a

pull-up resistor: learn by yourself). It works without pull-up resistor, but it often causes

trouble at high speed rotation.

 Figure. 14 Encoder pinout (from HEDS5540 manual)

The source code is as follows (using GPIO pins 21 and 22). The encoder of 500 pulses per

revolution is used in quadruplicated mode (how many pulses per revolution). The serial

communication is set faster than before because of the frequency of the display.

 Figure. 15 Sample program to read the encoder

[課題14] Using an encoder, the angle of rotation of the motor is measured and

continuously displayed on the PC screen via serial communication. The angle is

converted to radian and displayed. Make a full revolution in the forward/reverse

17

direction and check if a value of ±2π is displayed.

(Reference) When the encoder value is measured by the microcomputer, counts are not

taken when the rotation speed becomes high-speed, and the deviation may occur.

Study the H-bridge circuit by yourself, for example, by the following.

http://www.picfun.com/motor03.html

The motor drive (H-bridge drive) is controlled by PWM control. The BD6222HFP used in

this project has 1.27mm pitch footprints, so it needs to be converted to normal board

pitch (2.54mm) (Figure. 16). When using the pitch conversion board, make sure that

the heat dissipation surface of the BD6222 does not contact each terminal (the heat

dissipation surface itself is connected to the GND).

 Figure. 16 Pitch conversion of BD6222HFP

 The internal modules, pin names, and function table of the BD6222HFP are as shown

in Figure. 17 By adding digital inputs to the Fin and Rin number pins, forward, reverse,

brake, and stop are realized.

Put a 10uF capacitor between the power supply and GND. Select a capacitor with a

withstand voltage of at least twice the power supply voltage.

As described later, the power supply for the motor drive should be separate from the 5V

power supply of the ESP32.

18

 Figure. 17 Internal modules, pin names and truth table (from BD6222 manual)

The power supply for driving the motor is a regulated power supply for experimental use.

This power supply has a voltage setting and current limit setting (CVCC power supply:

Constant Voltage Constant Current power supply). In general, the power supply works

as a constant voltage power supply when the current is less

than the current limit, and becomes a constant current power

supply when the current exceeds the limit. This allows the

current limit to be set low enough to prevent circuit damage

due to short circuits. Also, by actively using the current limit

function, it may be used as a constant current source.

In this experiment, the power supply voltage is set to 12V and

the current limit is set to about 0.3A at first. After that, if there is no problem on the

circuit, the current limit is increased to about 1.5A.

Study the CVCC power supplies, for example, in the following.

19

http://www.kikusui.co.jp/knowledgeplaza/powersupply1/powersupply1_j.html

https://www.kikusui.co.jp/faq/topic.php?id=XOfJmMqF4OUx

 Figure 18 Sample program to run the motor driver

[課題15] Explain the difference between a stop and a brake in an H-bridge circuit,

including the principles.

The function table in Figure 18, together with the connection of PWM pins to Fin and

Rin, suggests that the outputs can be controlled by a setup and function similar to Figure.

19 The output can be controlled by the setup and function as shown in Fig. 17.

 Figure. 19 Sample program to drive the H-bridge circuit with PWM (partial)

20

 Figure. 20 Encoder reading circuit and H-bridge circuit

 Figure. 21 Encoder Reading Circuit and H-Bridge Circuit Photo

[課題16] Send commands via serial communication, for example, press f(forward)

and b(backward) to switch between forward and reverse, and press h(igh) and l(ow)

to change the speed each time. Set the frequency to 20kHz and check that the two

PWM outputs are as expected by measuring two channels simultaneously with an

oscilloscope. (Probably the motor is not driven at 20kHz. This is related to the

21

specified bit width. Change the bit width to 12bit and use 20kHz setting.

[課題17] How much current is flowing when the motor is kept rotating in one

direction? Also, when you stop the rotation of this motor by hand (be careful!), how

much current flows? Explain why this difference occurs (keywords: DC motor, back

EMF).

[課題18] Attach a handle to the DC motor shaft by machining aluminum. (This part

will be taught individually according to the following)

Aluminum machining course content

1. How to take care of your teeth

① How to Use Calipers

② How to use the Height Gauge

③ How to punch

2. How to use a band saw

3. How to use the drill

① How to loosen the pedestal and move it up and down

② How to replace the drill

③ Fixing materials in a vice

④ Drilling, deburring for small holes

⑤ Special Drill 1: How to use the Step Drill

⑥ Special Drill 2: How to Use Deburring Drills

4. How to cut the tap

5. Clean up: How to clean up (Brush around tools. Vacuum the floor)

22

 From now on, fix the aluminum base to the desk with duct tape (Figure. 22).

 Figure. 22 Knobbed motor and control board

[課題19] Use the P control to head to the desired position (the initial position is fine),

turn on the power and try to rotate the handle by hand. See what happens. Increase

the gain and try to return as quickly as possible.

 The loop cycle should be measured so that the 1kHz loop is always maintained. You

can use the timer interrupt described later, or you can insert an appropriate delay

in the loop function.

[課題20] Try to get the PD control to go to the desired position (initial position is fine),

turn on the power, and rotate the handle by hand. What happens? Also, send position

commands from PC (e.g. r(ight), l(eft)) and make it move every time you press the

keyboard. In order to calculate the D component, the derivative is necessary, but be

sure to measure the loop period and calculate it using the time ⊿t (to cope

with changes in the loop period).

23

[課題21] The target trajectory is drawn by PID control. For example, one second

rotation is used as the orbit. The PID control is applied to the difference between the

current position and the target trajectory. Send commands from the PC (e.g. r(ight),

l(eft)) so that the direction of rotation changes each time the keyboard is pressed.

[課題22] Represent a "wall". In this case, we can express a spring wall by

considering the angle beyond a certain angle as the "amount of bending" and

presenting a reaction force proportional to this amount of bending. If the

proportional constant (spring constant) is increased, a harder wall can be

expressed. The proportional constant should be as high as possible. The loop period

is set to 100Hz, 1kHz, and 10kHz, and how the hardness changes is observed.

9 Data logging and Processing by PC program
We practiced how to read the values of three axes of acceleration sensor in chapter 2. In

this chapter, we consider the data logging method using PC program.

 From here on, we will use Processing as the programming environment on the PC side

(https://processing.org/). If you have never used it before, you should learn it by yourself

before proceeding to the following tasks. The circuit in Section 2.2 is created on the board

before proceeding. The power supply to the accelerometer is the 3.3V power supply of

ESP32.

[課題23] The sample program is shown in Figure 24 Modify the Processing program

and save the data in CSV file format. Use PrintWriter class, see the help of

Processing. Also check the keyboard related functions, and start recording when any

key is pressed, and save the data after 100 recordings and exit.

24

 Figure 23 Accelerometer sample program (ESP32 side)

25

 Figure 24 Sample program for reading acceleration sensor value (Processing side)

In the above sample, serial communication was performed in the Draw function in

Processing. However, the Draw function is usually read at 60fps. There is a limitation if

you want to record data more frequently or accurately.

 Processing's serial library has a mechanism that is useful in this case. First, define the

serialEvent function. Also use the bufferUntil function to make sure that a serialEvent

is fired only when a specific character is encountered. To use this mechanism, you need

to specify a specific character at the end of the data (called footer from now on), so the

amount of sending/receiving will increase by 1 byte per time (Figure. 25).

At this time, it is necessary to avoid that the numerical value indicating the footer

appears in the data by accident. Since the AD conversion is 12 bits per channel this time,

if we transmit the upper and lower 6 bits each, all the data will be within the range of 0-

63. If the numerical value of the footer is, for example, 0xFF (all 8 bits are 1), there is no

need to worry about the conflict of the data and the specified character.

26

 Figure. 25 Example of data column and footer

When reading multiple bytes of data, it is important to ensure that the "break" in the

data is correct. The data from the microcontroller may start from the Y-axis data or the

second byte of the Z-axis data, depending on the timing of starting the microcontroller,

the timing of starting the program on the PC, and so on.

 To solve this problem, the first method is to send a request signal for data transmission

from the PC side to the mbed side. This is the most standard way, but there is also a way

to explicitly search the footer in the program on the PC side, as in Figure. 26 However,

there is also a way to explicitly search the footer in the program on the PC side, as shown

in Fig. 26. This way, the break of data is correctly recognized at the first read.

 Figure. 26 Searching for a footer in a serial event (Processing)

The definition of interrupt functions with bufferUntil can lead to non-reproducible bugs,

as is usual with such interrupt functions, because it is not known when the serialEvent

function will be called. For example, the serialEvent function may be called the moment

after bufferUntil is called (before Processing's setup function has finished). This can

cause bugs, for example, if the file to be written is not yet ready to be written. Such bugs

typically occur "once in a while". Do not use ad-hoc solutions to these bugs.

27

[課題24] Record the values of 3 axes of acceleration sensor at 1kHz. To make the

interval of data acquisition on ESP32 side precise, perform timer interrupt by

referring to the above explanation To make the interval of data acquisition on ESP32

side accurate, perform timer interrupt with referring to the above explanation. In

order to confirm that the measurement is done in 1ms cycle, invert the state of

appropriate digital output pin every time and observe it with oscilloscope.

ESP32 can use timer interrupt with high time resolution.

 http://www.iotsharing.com/2017/06/how-to-use-interrupt-timer-in-arduino-esp32.html

https://esp32.com/viewtopic.php?f=19&t=2481

https://techtutorialsx.com/2017/10/07/esp32-arduino-timer-interrupts/

https://github.com/espressif/arduino-

esp32/blob/master/libraries/ESP32/examples/Timer/RepeatTimer/RepeatTimer.ino

 Figure. 27 Timer interrupt sample program

The above is a method of measurement that does not depend on the cycle of the Draw

function on the Processing side. However, the stability of the USB communication is a

problem when the control loop including a PC is configured. The high-speed control loop

should be completed in the microcontroller whenever possible. If real-time performance

is not required, temporary storage in the memory on the microcontroller is often used.

[課題25] Control using a DC motor and an acceleration sensor. The acceleration

28

sensor is attached to an aluminum rod at the end of the DC motor so that the

aluminum rod is always horizontal even when the DC motor is moved by hand. The

measurement and control loop is set to 1 kHz or higher using timer interrupt.

9.1 Multitasking

The example above was to set the control loop to 1kHz by timer interrupt of ESP32.

On the other hand, if the ESP32 has more tasks to do or more data to send, the

communication overhead becomes a problem (e.g. when using hundreds of sensor data

points).

In such a case, ESP32 has two CPU cores and can be stabilized by dividing it into "core

for serial communication" and "core for measurement and control". For example,

measurement and control is done at 1kHz, and serial communication is used to receive

commands from PC or to send the current status to PC (1kHz is also good for this, but a

lower cycle is also acceptable depending on the purpose).

https://plaza.rakuten.co.jp/lovesun/diary/201908100000/

https://forum.arduino.cc/index.php?topic=621311.02

29

 Figure. 28 Multitasking sample program (ESP32)

The normal loop() function is running on core1, so it is processed in parallel on core0 (in

this case, serial communication is used. This example doesn't have the advantage of

multitasking. In the parallel processing side, it is often used to prevent Watchdog Timer-

related stoppage by calling vTaskDelay() function. In the above example, we define a

function called feedTheDog instead of this function to explicitly prevent the Watchdog

Timer from stopping.

Multitasking is not a special assignment, so please refer to it when you need it in a real

assignment. 2 cores are included in ESP32.

 Figure. 29 Corresponding sample program (Processing)

30

10 Wireless communication
The board used in this project has modules for Wi-Fi and Bluetooth. Use them!

10.1 BluetoothSerial

BluetoothSerial library is used. No download is necessary if you have the latest version

of Arduino-ESP32 environment.

 https://github.com/don/BluetoothSerial

https://blog.rogiken.org/blog/2018/04/11/esp32%E3%81%A7bluetoothserial%E9%80%9A

%E4%BF%A1%E3%82%92%E3%81%97%E3%82%88%E3%81%86%EF%BC%81/

https://techtutorialsx.com/2018/03/13/esp32-arduino-bluetooth-over-serial-receiving-

data/

If you add Bluetooth device on PC side, serial port will be increased, so you can write

normal serial communication program after that.

This Bluetooth Serial is not suitable for sending large amounts of data.

[課題26] Make the RC servo to be controlled from PC via Bluetooth.(Finally, it

became Radio Controlled!)

10.2 Wi-Fi (ESP32 configured as access point)

Many of the Wi-Fi samples requires external Wi-Fi router. However, ESP32 can be

configured as a Wi-Fi access point (but it is slow). This method is used first because it

can be used without a router.

 Figure. 30and Figure. 31 shows the sample programs of ESP32 and Processing. In the

ESP32 program, an infinite loop is created not by the loop function but by the while

statement in it.

http://mukujii.sakura.ne.jp/esp2.html

31

 Figure. 30 Wi-Fi sample program (ESP32 side)

 Figure. 31 Wi-Fi sample program (Processing side)

[課題27] Try to run the above sample program. change IP address, access point name,

password, etc. arbitrarily. after writing ESP32, find Wi-Fi access point from PC and

connect to it. After that, try to run Processing. Report the result of the operation and

its discussion, and monitor it by serial communication on PC side. Also try to make

ESP32 completely wireless by using mobile battery.

32

10.3 Wi-Fi (using an external router)

The method in the previous section is simple, but the PC must access the ESP32 access

point, and the Internet connection cannot be used otherwise. Next, we try the method

using an external Wi-Fi router.

 Figure 32 Wi-Fi sample program Part 2 (ESP32 side)

[課題28] Try to run the above sample program. change the IP address, the name of

the access point, the password and so on arbitrarily. It is necessary to check the

number with serial terminal first. You may need to change the port number

depending on your router configuration.

11 References
Here are some references other than those discussed in the text.

Links that were particularly helpful in the preparation of the document

[1] ESP-WROOM-32 https://ht-deko.com/arduino/esp-wroom-32.html

[2] ESP-IDF environment, unlike Arduino environment, you can use all features of

ESP32. https://www.mgo-tec.com/esp32-idf-howto-01

book

[1] A standard textbook for "A Reintroduction to Operational Amplifier Basic Circuits".

33

[2] Ready to use! Operational Amplifier Schematics

[3] Transistor Technology SPECIAL "Practical Circuit Design with OP Amplifier

[4] Transistor Technology SPECIAL "OP Amp IC Application Note

[5] Transistor Technology SPECIAL "Thorough Illustration Digital Oscilloscope

Application Note" SPECIAL series from CQ Publishing. The contents are standard,

and it is for the next step for those who have graduated from the introductory level,

and it is the type of book that can be kept in your desk for a long time. Other than

this, all the Transistor Technology SPECIAL books in my laboratory are good

reference books.

[6] Transistor Technology We subscribe monthly in the lab.

