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Abstract

We have developed a tactile display that uses elec-
tric current from the skin surface as a stimulus. Our
main objective was to independently stimulate a vari-
ety of mechanoreceptors and to generate specific sen-
sations by combining stimuli. The key to this goal is
selective nerve stimulation. In this paper, a mathemat-
ical framework is build for the general design of the
selective stimulation. The geometries of electrodes and
nerve fibers are arbitrary, and the waveform of the elec-
tric current from each electrode is independently con-
trolled. Furthermore, the problem is formulated by lin-
ear or quadratic programming, which provides an opti-
mal solution.

1 Introduction

An electrocutaneous display is a tactile device that
directly activates nerve fivers within the skin by electric
current from surface electrodes.

Electrocutaneous displays are superior to conven-
tional mechanical tactile displays in many respects.
They are smaller, more durable, more energy-efficient,
and free from many mechanical difficulties such as res-
onance. For these reasons, extensive work has been
done on electrocutaneous displays [6,7].

One of the most important subject of electrocuta-
neous display is selective nerve stimulation. There are
two aspects to it. One is to avoid invasive sensation
during stimulation, which is achieved by suppressing
pain related nerves while activating the nerves of a
mechanoreceptor.

The other is to independently stimulate each type
of mechanoreceptor. If thiese steps are achieved, any
kind of tactile sensation could be generated by combin-

ing specific stimuli [2]. Although it is a more difficult
task, we have already shown [7] that selective stimula-
tion of each type of mechanoreceptor is possible. We
call these stimuli ”tactile primary colors” because they
are analogous to red, green, and blue, which are the
primary colors for vision.

This design challenge is not limited to the electrocu-
taneous display. It is common to any study of electrical
stimulation, and, hence, there have been many studies
on the subject [4,5,10,11]. However, although some of
them analyzed phenomena with precise modeling and
some were based on physiological experiments, few of
them dealt with the design of optimal stimulation using
arbitrary nerve geometry. Perhaps the concept of Ac-
tivating Function [11] was a rare successful case, but it
only dealt with geometry and does not provide insights
into waveforms.

In this paper, a mathematical framework is pre-
sented for a general design of selective stimulation. The
geometries of electrodes and nerve fibers are arbitrary,
and the waveforms of the electric current from each
electrode are independently controlled. Furthermore,
the selective stimulation problem is formulated by lin-
ear or quadratic programming, which provides an op-
timal solution.

2 Electrical Models

In this section, a mathematical model, which de-
scribes the spatial and temporal relationship between
electrodes and nerve fibers, is formulated.

Figure 1 is an illustration of a general situation of
electrical stimulation from the skin surface and an elec-
trical model of nerve fibers [9]. For simplicity, this pa-
per deals exclusively with a 2D cross-sectional problem,
but it may be expanded easily to 3D.

We assume that a nerve is activated when the po-
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Figure 1. Current Stimulation from the Skin Sur-
face and an Electrical Model of a Nerve Fiber.

tential difference of nerve membrane Vm reaches a cer-
tain threshold Vth. Then, electrical stimulation could
be recognized as a mapping problem between a cur-
rent source distribution I(x, t) on the skin surface and
Vm(r, t), where x and r are coordinates along the skin
surface and nerve fiber and t represents the time.

This mapping I(x, t) → Vm(r, t) is divided into two
processes. The first process is described as a mapping
between I(x, t) and the external membrane potential
Ψ(r, t) along a nerve. The second process is a mapping
between the external membrane potential Ψ(r, t) and
the membrane potential difference Vm(r, t).

2.1 Mapping 1: Ψ(r, t) → Vm(r, t)

The second mapping Ψ(r, t) → Vm(r, t) will be dealt
with first. Here, the myelinated nerve, which is char-
acterized by a surrounding insulator called the Myelin
Sheath, is discussed. As almost all the nerve membrane
is insulated by the sheath, it can only be electrically
accessed by the Node of Ranvier, which is a small gap
between each sheath. Since only these gaps need to be
considered, a discrete model could be built as follows.

Numbers are given to these nodes. Then, the ex-
ternal membrane potential, membrane potential differ-
ence, and internal potential at these nodes are repre-
sented as Ψ(n, t), Vm(n, t), and V (n, t), where n(1 ≤

n ≤ N ) is the node number.
The nerve membrane at the node is electrically mod-

eled with capacitance Cm(n) and conductance Gm(n).
The internal conductance from node n − 1 to node n
is represented as Ga(n). The electric current from the
inside to the outside of the membrane at the node is
Im(n, t), and the internal current from node n − 1 to
node n is I(n, t). When they are obvious, n and t will
be omitted from now on.

From Kirchhoff’s law of current,the membrane cur-
rent density Im(n, t) must be equal to the loss of inter-
nal current I at node n, and Im is also the sum of the
current flowing Cm and Gm.

Im(n)
= I(n) − I(n + 1)
= Ga(V (n + 1) − 2V (n) + V (n − 1)) (1)

= Cm
∂Vm(n)

∂t
+ GmVm(n) (2)

Putting Vm + Ψ in place of V ,

∂Vm(n)
∂t

= (−Gm

Cm
− 2
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)Vm(n)

+
Ga

Cm
(Vm(n + 1) + Vm(n − 1))

+
Ga

Cm
(Ψ(n + 1) − 2Ψ(n) + Ψ(n − 1))

The equation is simplified by the vector representa-
tion as follows [3]:

V̇m = AVm+BΨ (3)

Vm = [Vm(1), Vm(2), ..., Vm(N )]T

Ψ = [Ψ(1), Ψ(2), ..., Ψ(N )]T
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 ,

where ˙ represents the temporal differential and the su-
perscript T means the transverse vector.

2.2 Mapping 2: I(x, t) → Ψ(n, t)

Next, another mapping I(x, t) → Ψ(n, t) is treated.
Here, it is assumed that each electrode is small enough



to be represented as a point source. Then, it could also
be discretized as I(m, t), where m(1 ≤ m ≤ M ) is the
number of electrodes.

For simplicity, the uniform infinite space with pure
resistance is considered. The electric potential Ψ is ob-
tained by an integral of the current density as follows:

Ψ(n, t) = −
∫

R(n,1)

iρdR (4)

=
I(1, t)ρ

4πR(n, 1)2
, (5)

where i is the current density, ρ is the resistivity, and
R(n, 1) is the distance between electrode 1 and node n.

For a case of arrayed electrodes,Ψ(n, t) is obtained
by superposition.

Ψ(n, t) =
I(1, t)ρ

4πR(n, 1)2
+

I(2, t)ρ
4πR(n, 2)2

+ · · ·+ I(M, t)ρ
4πR(n, M )2

(6)
The equation is simplified by the vector representa-

tion as follows:
Ψ(t) = CI(t), (7)

where

I(t) = [I(1, t), I(2, t), ..., I(M, t)]T (8)

C =
ρ

4π
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(9)

It has long been a matter of controversy whether
current control is superior to voltage control in an elec-
trical stimulation [5], and the discussions were mainly
focused on the stability of sensation and the ease of
circuit fabrication. However, a current source is much
superior to a voltage source from a mathematical view-
point. Since current sources were used, a generated
electric potential field was easily calculated by a sim-
ple superposition of each current source. If a voltage
source is used, the calculation of potential field is much
more difficult.

From Eqs.3 and 7, the following is obtained:

V̇m = AVm+BCI (10)

Finally, x for Vm, B for BC, u for I is used, and a
system state equation is obtained.

ẋ = Ax + Bu (11)

3 Selective Stimulation

In this section, the optimal design method of se-
lective nerve stimulation is described. The purpose of
selective stimulation is simple. It is to stimulate the de-
sired nerve fibers without stimulating undesired fibers.
In this paper, a case with two nerve fibers, a and b, will
be discussed, in which fiber a should be activated and
fiber b should be suppressed (Figure 2).
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Figure 2. Selective Nerve Stimulation by Elec-
trocutaneous Stimulation.

It is mathematically described as follows:
Let the system state equations of these two nerve

fibers be described as follows:

ẋa = Aaxa + Bau (12)
ẋb = Abxb + Bbu (13)

The input vector u(t) is common in these equations.
Our objective is to find u(t), which activates nerve a
while suppressing nerve b. Because of the assumption
that the nerve will fire when the membrane potential
difference reaches the threshold, the selective stimula-
tion is described as an optimization problem as follows:

max(xb|max(xa) = Vth)→
u

min (14)

Its meaning is as follows: the maximum value of Vm

of nerve b is minimized, while Vm of nerve a reaches the
threshold voltage (Vth). Equations 12 through 14 are a
Mini-Max problem of dynamic systems. The maximum
value is searched both spatially and temporally.

3.1 Temporal Discretization

What makes the problem difficult in Eq.14 is that
it is a dynamical system. In other words, although the
spatial discretization has been completed, the temporal
axis is still continuous. Here, the temporal region is
discretized by assuming a pulsed waveform as follows:



u(t) =




u(1) 0 ≤ t < dT
u(2) dT ≤ t < 2dT

...
...

u(T ) TL − dT ≤ t < TL

where dT is the pulse width, TL is the stimulation pe-
riod, and T = TL/dT is the number of pulses. Then,
Eq.11 becomes a simple difference equation as follows:

x(0) = 0 (15)
x(k) = Px(k − 1) + Qu(k) (1 ≤ k ≤ T ), (16)

where P = exp (AdT ) and Q = A−1(P− I)B.
By lining up the vectors, the following is obtained:
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...
u(T )




The equation is rewritten as follows:

x = Au, (17)

where x, A, and u are all redefined. x is the NT × 1
vector, which contains both temporal and spatial in-
formation of the membrane potential difference, u is a
MT × 1 vector, and A is a NT × MT matrix. Then,
Eqs.12 and 13 are changed to

xa = Aau (18)
xb = Abu (19)

3.2 Safety Condition

In electrical stimulation, when electric current is
applied from one electrode, the current should be re-
turned by the surrounding electrodes. In other words,
the sum of the current source distribution should al-
ways be zero at any moment. If this condition is not
satisfied, the current flows deeply into the human body,
which may cause unexpected serious trouble. There-
fore, this is considered to be a safety condition. It is
described as follows:

M∑
m=1

I(m, t) = 0

or, simply,
Eu = 0, (20)

where E is T × MT matrix as follows:

E =




1 · · ·1 0 · · ·0 · · · 0 · · ·0
0 · · ·0 1 · · ·1 . . .

...
...

. . . . . . 0 · · ·0
0 · · ·0 · · · 0 · · ·0 1 · · ·1




3.3 Formulation of the Optimization Problem as
Linear Programming

From Eqs.14,18,19 and 20, the selective stimulation
problem is rewritten as follows:

max(Abu)→
u

min (21)

subject to
maxAau = Vth (22)

Eu = 0 (23)

This is a problem of linear inequality called Mini-
Max. Still, it is not easy to solve because there is an
unusual condition maxAau = Vth in the constraint
equations. This equation means that the membrane
potential difference of nerve a reaches the threshold at
some place and at some time.

The restriction is changed into an easier condition
as follows: Vm of nerve a reaches Vth at a known time
and a known place. Let the place and the time be nact

and T (final time of stimulation), respectively. Then,
Eq.22 is changed to

Aa partu = Vth,

where Aa part is a partial matrix (actually a vector)
from Aa, which satisfies Aa partu = xa(nact, T ).

The final formula is as follows:

max(Abu)→
u

min (24)

subject to
Aa partu = Vth (25)

Eu = 0 (26)

By a simple transformation (which is described in
the Appendix), it is changed to a standard form of lin-
ear programming. After that, it is numerically solved
by mathematical software, such as MatlabTM.

4 Other Constraints

In this section, some other practical constraints of
electrical stimulation are discussed, and the method
for building them into our optimization formula is de-
scribed.



4.1 Balanced or Biphasic Condition

Although this is not the main focus of our study,
it is worth mentioning that some researchers suggest
that balanced stimulation is necessary for long-term (1
minute∼) stimulation, in which positive and negative
part of waveform is equalized. It is described as follows:

∫ TL

t=0

I(m, t)dt = 0 (27)

or, simply,
Fu = 0 (28)

F=
[

I I · · · I
]

where F is the M × MT matrix and I is a M × M
identity matrix. This condition is quite similar to our
safety condition in Sec.3.2.

4.2 Minimization of Joule Heat

One problem of electrical stimulation is that a sud-
den sensation of stinging occurs because a concentrated
current produces Joule heat, which activates untar-
geted afferent nerves [8].

The solution to this problem is to find an optimal
waveform in which stimulation can be achieved with a
minimum of Joule heat.

In general, the calculation of Joule heat (J) is not
easy. We regard it as proportional to the square of
the electric current. Although it is not accurate, we
expect that the results may give us some insight for
the stimulation design.

J ∝
M∑

m=1

T∫
t=0

I(m, t)2dt (29)

∝ uT · u (30)

Therefore, a mathematical representation of the
minimization of Joule heat is

uT · u→
u

min (31)

4.3 Electric Current Limitation

The other problem is the limitation of the stimulator
circuit because there is no such thing as an infinitely
high-voltage stimulator. Ordinarily, the limitation ap-
pears as the maximum and minimum electric current.
It is represented as follows:

1 · Imin ≤ u ≤ 1 · Imax (32)

Our optimization formula, which satisfies Eqs.28
and 32 and optimizes Eq.31 as well as Eqs.24 through
26. is as follows:

uTu + w max(Abu)→
u

min (33)

subject to
Aa partu = Vth (34)

Eu = 0 (35)
Fu = 0 (36)

1 · Imax ≥ u ≥ 1 · Imin (37)

where w is a weight parameter. It is arbitrary chosen
by the designer of the stimulation. If w = 0, only
Joule heat is optimally minimized, while if w → ∞, it
is equivalent to the previous linear programming. The
mathematical framework was changed from linear to
quadratic programming.

5 Optimal Design Examples

In this section, the design for the optimal stimula-
tion in some simple situations is described. By com-
paring our results with previously obtained knowledge,
we show the relevance of our method.

In all examples, the electrical parameters of a nerve
were from [9]. The nerve was horizontally oriented to
the skin surface with 20[mm] (20-40 Nodes of Ran-
vier) in length, and stimulation length TL was fixed
to 200[µs]. A Node of Ranvier just beneath the central
electrode is chosen as a node to be activated (nact).

5.1 Minimum Energy Stimulation

The first example is a design of a waveform to stim-
ulate a single nerve while minimizing generated Joule
heat. As the Joule heat is a main cause of pain during
stimulation, the obtained waveform is expected to real-
ize the stimulation with a higher pain threshold. This
problem is formulated when we put w = 0 in Eq.33.
Equations 36 through 37 were not used.

The situation is illustrated in Figure 3. We placed
three electrodes 1[mm] apart. As the total current den-
sity is always zero (safety condition from Sec.3.2), and
from the geometrical symmetry, the waveform from the
central electrode must be considered. The electric cur-
rent of the surrounding two electrodes is −1/2 of that.

The unit sampling time dT as 10[µs] was set, and the
optimal waveform from the central electrode was cal-
culated. The result is shown in Figure 4. The cathodic
(depolarizing) current is taken in a positive direction.
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Figure 4. Optimal Waveform and Membrane Po-
tential of the Central Node in the Minimum En-
ergy Stimulation.

The membrane potential difference of the central node
is also shown.

The obtained optimal solution was a cathodic, ex-
ponentially increasing waveform. The total Joule heat
was decreased by approximately 30% compared to a
rectangular wave, whose pulse width is optimized.

This waveform could be roughly regarded as a com-
bination of two pulses, one of which is a low-level, depo-
larizing pre-pulse, and the other is a main short pulse.
From this viewpoint, our result may explain the result
obtained by Poletto [10], who experimentally obtained
a higher pain threshold by a low-level, long-term depo-
larizing pre-pulse.

5.2 Diameter Selective Stimulation

The second example is a waveform design for di-
ameter selective stimulation. It is useful for electro-
cutaneous display because different types of cutaneous
information are transmitted by nerves of different di-
ameters.

There is a well-known relationship between pulse
width and nerve diameter. A thicker nerve is selec-
tively stimulated if a pulse is short, while a thinner

nerve is also stimulated if a pulse becomes wider. We
expected the same tendency to be observed.

We used Eqs.21 through 23 to obtain an optimal
waveform. Most of the situation is the same as in the
previous example, including the unit sampling time dT .
However, there are two nerve fibers with different di-
ameters (5[µm] and 10[µm]) at the same depth.

The results of thicker and thinner nerve stimulation
are shown in Figure 5.
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Figure 5. Optimal Waveform and Membrane Po-
tential. (Top): For Thicker Nerve. (Bottom): For
Thinner Nerve.

It was obvious that the thicker nerve selective stim-
ulation had the shortest pulse width possible, while the
thinner nerve stimulation had the longest pulse width,
which agreed well with our expectations.

There are two minor but interesting features. One
is that, in thicker nerve stimulation, a long-term, low
level anodic current (hyperpolarization) was observed.
The other is that, in thinner nerve stimulation, a high,
short-term cathodic (depolarization) input was seen at
the first period. This characteristic agreed well with
the result obtained by Fang [4]. He has shown ex-
perimentally that a Quasi-Trapezoidal pulse that was
amazingly similar in shape to our optimized waveform
could selectively activate small nerve fibers. This close
agreement implied that both Fang’s experimental re-
sult and our own mathematically obtained result con-
cering optimization are relevant.



5.3 Depth Selective Stimulation

The previous two examples dealt with waveform
only. Here, we deal with how to design the spatial pat-
terns of electrodes. The example treats spatial weight
optimization for depth selective stimulation in which
shallower or deeper nerves are selectively activated.

The situation is illustrated in Figure 6. Seven elec-
trodes were placed 1[mm] apart on the skin surface.
Two nerves with the same diameter were located at a
depth of 1[mm] and 2[mm], respectively.

Skin

Nerve a: φ5µm

7 Electrodes

1mm

1mm

Nerve b: φ5µm
2mm

w(1) w(2) w(3) w(4) w(5) w(6) w(7) i(t)

I(n,t)=w(n)i(t) 200µs

t
i(t)

Figure 6. Situation of Depth Selective Stimula-
tion.

Equations 21 through 23 were used again. The stim-
ulation waveform was fixed at a 200[µs] rectangular
pulse. It was achieved by setting dT = TL (or T=1).

There are also well-known facts about a coaxial elec-
trode1. If the diameter of a central electrode is en-
larged, or if the distance between the central electrode
to the surrounding electrode is enlarged, stimulation
of deeper tissues is possible; whereas, if it is not, they
could only stimulate shallower tissues. We expected
the same tendency to be observed. The results are
shown in Figure 7.

As we expected, deeper nerve stimulation had a wide
cathodic weights at the center, which enables electric
current to reach deep inside the skin. On the contrary,
a shallower nerve stimulation was achieved by a pair of
central cathodic and surrounding anodic current. This
pair worked as an electrical dipole, which enabled fast
attenuation of electric potential.

These results agreed well with our previous results
[7], which were designed with Activating Function [11].

Until now, we only used multiple electrodes and
obtained optimal weights for them. Although this is
not discussed in depth in the present study, we could
group some cathodic and anodic electrodes and repre-
sent them with larger electrodes. If we did that, we
could say that we had designed the electrode shape.

1Electrodes composed of a central stimulating electrode and
a surrounding return electrode
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Figure 7. Optimal Weights and Membrane Po-
tential. (Top): For Deeper Nerve. (Bottom): For
Shallower Nerve.

6 Conclusion

We constructed a mathematical framework for the
design of selective stimulation. The selective stimu-
lation was described as a sort of Mini-Max problem
of dynamic systems, in which the membrane potential
difference was a state vector and the electric current
was an input vector.

We then discretized the system both spatially and
temporally and showed that the problem could be un-
derstood as linear or quadratic programming, which
automatically gives us an optimal solution.

When arbitrary geometries of electrodes and nerve
fibers are given, optimal waveforms from each elec-
trode are automatically calculated, as we have seen
in Sections.5.1 and 5.2. The design of an optimal
electrode shape is also possible, as we have shown in
Sec.5.3.

In Sec.5, we saw that the optimal solutions we ob-
tained agreed well with previous studies. This agree-
ment indicates the following three significant ideas.
One is, of course, the relevance of our method, regard-
less of our very rough modeling and many assumptions.
Another is the usefulness, which is understood by the
fact that previous results were obtained with great ef-
forts of trial and error, while we obtained them by a
single mathematical optimization. The last is that we



could assure that previously proposed stimuli were op-
timal in a mathematical sense.

Although we dealt with some of the simplest cases
in this paper, we do not think it would be difficult to
expand our method to an actual case. Our next step
will be to find an optimal stimulation method for the
selective stimulation of mechanoreceptors in a finger.
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Appendix: Mini-Max Problem Solution

We have seen in Sec.3.3 that our optimization prob-
lem is reduced to linear inequality, a Mini-Max prob-
lem. To numerically solve it, we must transform the
problem into a standard form of linear programming,
which the mathematical software can manage. Here,
we take “linprog”2 as an example and show the trans-
formation.

The “linprog” solves a standard linear programming
problem as follows:

fTx→
x

min subject to Ax ≤ b (38)

Aeqx = beq (39)
lb ≤ x ≤ ub, (40)

where f , x, b, beq, lb, and ub are vectors and A
and Aeq are matrices [1]. We now transform Eqs.24
through 26 to this canonical form.

Let the maximum value of Abu be bmax. Then,

Abu ≤ [1, 1, · · · , 1]T bmax (41)

Adding bmax at the end of u, x is defined as follows:

x = [uT, bmax]T

Note that

bmax = fTx (42)

fT = [0, 0, · · ·, 0, 1]

Then, Eq.41 is expressed as

Ax ≤ 0 (43)

A =
[

Ab −1
]

−1 =
[ −1 −1 · · · −1

]T
2linprog is a function of MatlabTM

From Eqs.42 and 43, the final representation of our
optimization problem is

fTx→
x

min subject to (44)

Ax ≤ 0 (45)
Aeqx = beq, (46)

where

Aeq =
[

Aa part 0
E 0

]

beq =
[

Vth 0 · · · 0
]T

This formula is in the scope of the “linprog”, so that
we could solve it with Matlab.

Here, we dealt with linear programming, but things
do not change in the case of quadratic programming,
which we discussed in Sec.4.
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