
Interactive System インタラクティブシス テム特論

Hiroyuki Kajimoto Twitter ID kajimoto Hash tag #itsys

言語 / Language

- ●講義は日本語、資料は英語。✓専門用語は併記
- Lecture in Japanese, handouts in English.

- ヒトの特性/Human perception
- 最新技術(センサ) / Today's sensing technology
- 最新技術(ディスプレイ)/Today's display technology

This Lecture aims to draw rough sketches of "From Human perception to Optimal Display Design"

Outline

- 1. 人間計測手法/Measuring Human
- 2. 視覚/Human Vision System
- 3. 視覚センシング/Visual Sensing
- 4. 視覚ディスプレイ/Visual Display
- 5. <u>小テスト</u>/Mini Test
- 6. 聴覚、聴覚インタフェース/Auditory Interface
- 7. 触覚、触覚インタフェース/Tactile Interface
- 8. 力覚、力覚インタフェース/Haptic Interface
- 9. 移動感覚インタフェース/Locomotion Interface
- 10. <u>小テスト</u>/Mini Test

Communication

- · Handouts on the web
 - http://kaji-lab.jp/ja/index.php?people/kaji/interactive
 - Temporary, 2009 Japanese version. Will be replaced progressively.
- · Office hour
 - Anytime. Contact by e-mail first.
- Twitter
 - ID: kajimoto
 - Hash tag #itsys

Today's Topic:

人間計測手法/Measuring Human

- •インタラクティブシステムの構成要素
- •インタラクティブシステムを評価するためにも必須

Measurement of human action/reaction

- •To be used as parts of the interactive system
- •To evaluate the system

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測/ Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

History of Brain Function Observation(1)

- Theory of localization of brain function:
 - 1909:ブロードマンBroadmann made "map" of the brain by visual observation. (microscope)
 - WWI: Better guns = many patients with "partial" brain

Broadmann's map 52 regions of the cortex defined based on organization of cells.

History of Brain Function Observation(2)

- 1933:ペンフィールドPenfield Before Brain surgery for epilepsy, he stimulated brain directly by electrical needle. while the patients were awake. Result: Many functional region were found, including memory, sensory, and action.
- 1940: ロボトミーLobotomy Cut frontal lobe of the brain for mental disease, especially for violent patients. Result: Became calm, but also became like "robot"⇒Frontal lobe seems to be related to
- 1960: X-ray CT gave clear view of the brain without surgery.

脳機能計測/Measurement of Brain Function

- Not the measurement of brain, but brain function. Must be done during some work. (see, touch, think)
- State-of-the-art measurement technologies are used.
 - Measure "Electrical Activity"
 - ・脳波/EEG(brain wave), 1929~
 - 脳磁/MEG, 1972~
 - Measure "Blood Flow"
 - fMRI(functional MRI), 1973~
 - PET, 1965~
 - NIRS, 1994~
 - Active method
 - · Use magnetic stimulator

EEG (Brain Wave)

- EEG: Electroencephalogram
- 21~60 electrodes on the scull skin.
- Good points

 - Cheap!Very fast (ms)
- Bad points
 - Low spatial resolution.
 - Skin-electrode conductance is unstable.
 Can measure "surface", but cannot measure "deep region"
- Still used in many interactive systems

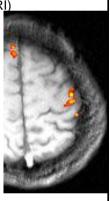
MEG

- MEG:Magnetoencephalography
- Similar to EEG, but measure "magnetic field" induced by electrical current.
- Very, very tiny magnetic field (about 1/10⁸ of the earth's magnetic field)
- Superconducting technology is used. (SQUID:Superconducting Quantum Interference Device)
- Good points
 - Very Fast (similar to EEG)
 - Can measure deep region. (magnetic field penetrates everything).
- Bad points
 - Surface sensors = 2D
 - Current sources = 3D mathematically very difficult to solve (almost impossible)

MRI

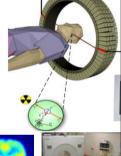
- · MRI:Magnetic Resonance Imaging
 - Very strong magnetic field make protons to "emit" electromagnetic waves.
 - By measuring this waves, can obtain 3D structures.
- Good points (compaired to X-ray CT)
 - No X-ray (=good for body)
 Bone is not an obstacle
- 3D data are obtained (X-ray CT:2D)

Bad points


- Very strong magnet (3T-): metal cannot be carried on.
- Takes a few minutes for a single shot.
- · Current standard for "brain imaging"

fMRI =functional MRI(機能的MRI)

- We must measure brain "activity", not shape.
 - By using MRI, measure "blood flow", by measuring two hemoglobins' ratio.
 - Hemoglobin: container of oxygion.
 - Red = many oxygen.
 Blue = few oxygen.
- Good point
 - Location is very accurately determined.
- Bad point
 - Requires a few minutes for single shot.
- Current standard for brain functional imaging.


PET

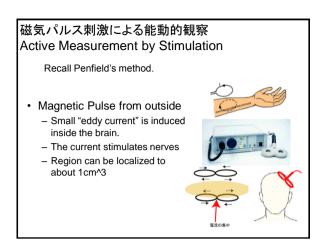
- PET = Positoron Emission Tomography
 Inject Radioactive ingredient as a
 "tracer" (O15)

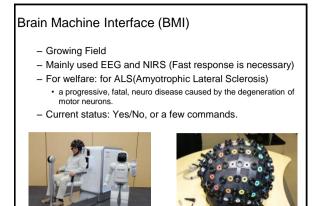
 - The "tracer" collapses, and generate two "γ waves" to the opposite direction. The detector detects the phenomenon.

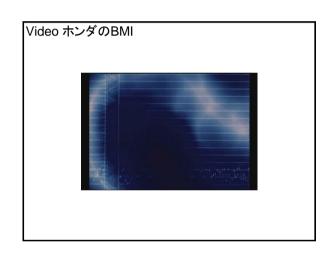
 - Position is determined by timing measurement.

 Blood flow can be measured.
- Good point
- A little faster than fMRI(a few second) Bad points
- radioactive ingredient is necessary
- Lower resolution than MRI

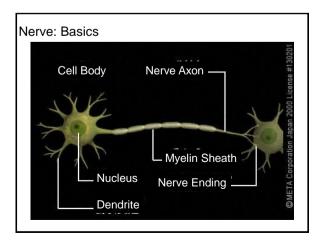
NIRS

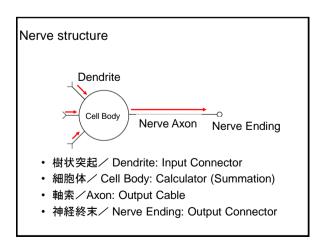

- NIRS=Near InfraRed Spectroscopy
 - Scull bone is transparent to InfraRed
 - Put InfraRed light, and obtain brain surface image. Hemoglobin: container of oxygion.
 - Red = many oxygen.
 Blue = few oxygen.
 - Good points No invasive. Easy to use.
 - Bad points
 - Low spatial resolution - A few seconds are necessary

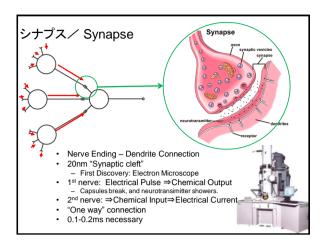


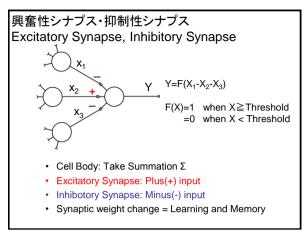


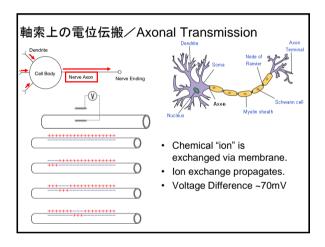
Summary of Brain Functional Imaging

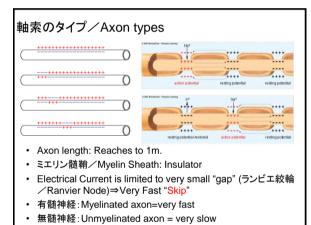

観察対象	空間解像度	時間解像度
Observe	Spatial Resolution	Temporal Resolution
Electric	Low	High
Electric	Low	High
Blood	High	Low
Blood	Mid	Mid
Blood	Mid	Mid
	Observe Electric Electric Blood Blood	Observe Spatial Resolution Electric Low Electric Low Blood High Blood Mid

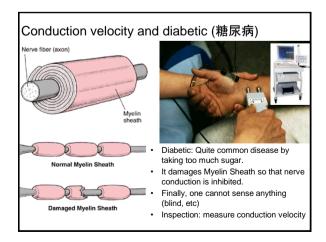


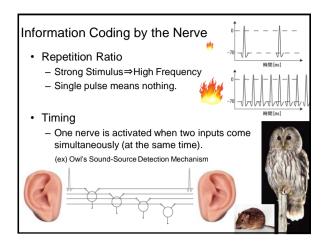


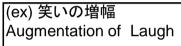


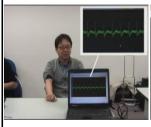










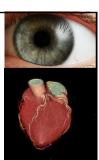


- $\bullet \mbox{Take}$ initial laugh timing by measuring muscle activity.
- •Enhance the laugh by using "empathy effect"

人間計測手法/Measuring Human

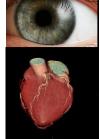
意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測 / Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測/ Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●<u>心理物理実験/Ask the user (psychophysics)</u>

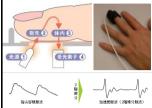

自律神経/Autonomic Nervous System

Nervous system that acts as a body control system. Composed of Sympathetic nervous system(SNS:交感神経) and Parasympathetic nervous system(PSNS:副交感神経).

Sympathetic nervous system (SNS:交感神経)


- ・ Nervous systems for "Fight and Flight" (闘争と逃走)
- Eye Pupils(瞳孔)→Open
- Heart(心臓) →Blood Pressure & Beat ↑
- Skin(皮膚)
 - Sweat Grand(汗腺)→Sweat(発汗)
 - Hair Elector Muscle (立毛筋)→Contract(収縮)
- Blood Vessel(血管) →Expand 拡張(一部 収縮)

Parasympathetic nervous system (PSNS:副交感神経)


- Nervous systems for "calming" (沈静)
- · Eye Pupils(瞳孔)→Close
- Heart(心臓) →Blood Pressure & Beat ↓
- Blood Vessel(血管) →Contract 収縮(一 部拡張)

情動を測定/Measure Emotional State

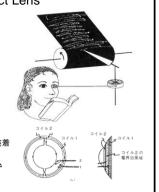
- Heartbeat & Blood Pressure (心拍数、血圧)
- Pulse Wave (脈波)
- GSR(galvanic skin response, 皮膚電気反応)

●<u>心理物理実験/Ask the user (psychophysics)</u>

行動計測/Measuring Motion Motion Capture System - 光学式/Optical - 機械式/ Mechanical - 磁気式/Magnetic - ビデオ式/Image Processing - 長一短/Pros and Cons - 遮蔽問題/Occulusion - ワークスペース/Workspace

- 金属の影響/Effect of Metal

Special Case: How to measure Eye movement


- アナログ測定/Analog measurement
 - コンタクトレンズ/Contact Lens
 - 眼底電位/ Electrooculography
 - 強膜反射/ Limbus Tracking Method
- 画像処理/Computer Vision
 - パッシブ・アクティブな方法/Passive・Active Methods

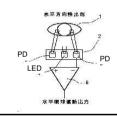
コンタクトレンズ/Contact Lens

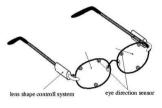
• カイモグラフ(Kymograph)

- バリエーション
 - オプティカル・レバー法 コンタクトレンズに微小ミラー装着
 - サーチコイル法 コンタクトレンズにコイルを埋込

眼底電位

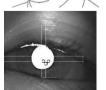
Electrooculography, EOG


- Horny coat(角膜) has ~1mV positive voltage to Retina(網膜)
- Electrodes(電極) around eyes. ⇒Measured voltage is proportional to eye rotation.
- Has wide range (velocity, frequency)
- · Accuracy not so good (1 deg~)

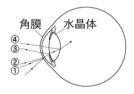


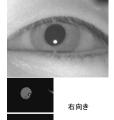
強膜反射/ Limbus Tracking Method

- · Emit IR light to the eye, measure reflected light. 黒目と白目の境界に赤外線照射。反射光計測
- Received light: White part > Black part.
- · Good for horizontal eye motion.



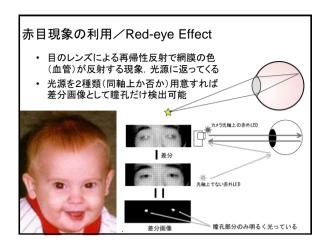
Computer Vision

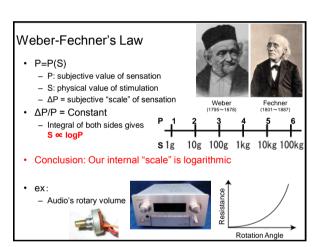

- · Capture eye image.
- · By image processing (pattern matching), eye center is calculated.
- · Reflesh rate = video rate.

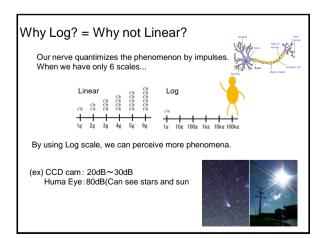


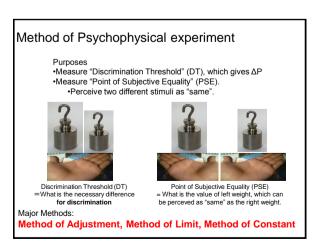
角膜反射/Reflection at Horny Coat

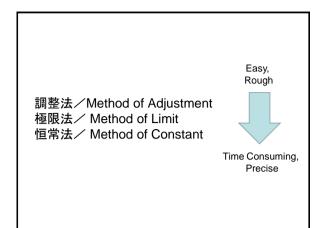
- 点光源の角膜照射時に現れる 角膜反射像(プルキニエ像)から 眼球運動を計測
- ・ ビデオカメラで撮影⇒画像処理
- 瞳孔中心との相対位置を使う




左向き






●心理物理実験/Ask the user (psychophysics)

