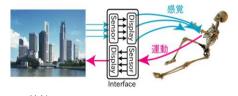


Interactive System インタラクティブシス テム特論(1)


> Hirovuki Kajimoto ka jimoto@hc.uec.ac.jp Twitter ID kajimoto Hash tag #itsys

言語 / Language

- ●講義は日本語、資料は英語。 ✓専門用語は併記
- Lecture in Japanese, handouts in English.

Necessary Knowledge for the research

- ヒトの特性/Human perception
- 最新技術(センサ)/Today's sensing technology
- 最新技術(ディスプレイ)/Today's display technology

This Lecture aims to draw rough sketches of "From Human perception to Optimal Display Design"

Outline

- 1. 人間計測手法/Measuring Human
- 2. 視覚/Human Vision System
- 3. 視覚センシング/Visual Sensing
- 4. 視覚ディスプレイ/Visual Display
- 5. <u>小テスト</u>/Mini Test
- 6. 聴覚、聴覚インタフェース/Auditory Interface
- 7. 触覚、触覚インタフェース/Tactile Interface
- 8. 力覚、力覚インタフェース/Haptic Interface
- 9. 移動感覚インタフェース/Locomotion Interface
- 10. <u>小テスト</u>/Mini Test

小テストと評価 / Mini Test & Evaluation

- 講義の目的の一つが「基本知識を得ること」なので、確認 のための小テストを行います。
- 完全前ばらし(一週間前)
- 今のところ持ち込み不可
- 評価=出席 (50%) + 小テスト (25% x2)
- As one of the main purpose of the lecture is to have basic knowledge, mini tests are necessary.
- · All questions will be open 1 week before the test.
- No carry-on items (tentative)
- Evaluation=Attendance (50%) + Mini Test (25% x2)

Communication

- · Handouts on the web
 - http://kaji-lab.jp/ja/index.php?people/kaji/interactive
 - Temporary, 2009 Japanese version. Will be replaced progressively.
- · Office hour
 - Anytime. Contact by e-mail first.
- Twitter
 - ID: kajimoto
 - Hash tag #itsys

Today's Topic:

人間計測手法/Measuring Human

ヒトの計測・

- ・インタラクティブシステムの構成要素
- •インタラクティブシステムを評価するためにも必須

Measurement of human action/reaction

- •To be used as parts of the interactive system
- •To evaluate the system

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

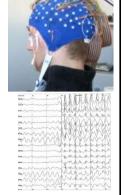
History of Brain Function Observation(1)

- Theory of localization of brain function:
- 1909: ブロードマンBroadmann made "map" of the brain by visual observation. (microscope)
- WWI: Better guns = many patients with "partial" brain damage

Broadmann's map: 52 regions of the cortex defined based on organization of cells.

History of Brain Function Observation(2)

- 1933:ペンフィールドPenfield
 Before Brain surgery for epilepsy, he
 stimulated brain directly by electrical needle.
 while the patients were awake.
 Result: Many functional region were found,
 including memory, sensory, and action.
- 1940: □ポトミーLobotomy
 Cut frontal lobe of the brain for mental
 disease, especially for violent patients.
 Result: Became calm, but also became like
 "robot"⇒Frontal lobe seems to be related to
 "emotion"
- 1960: X-ray CT gave clear view of the brain without surgery.


脳機能計測/Measurement of Brain Function

- Not the measurement of brain, but brain function. Must be done during some work. (see, touch, think)
- State-of-the-art measurement technologies are used.
 - Measure "Electrical Activity"
 - 脳波/EEG(brain wave), 1929~
 - 脳磁/MEG, 1972~
 - Measure "Blood Flow"
 - fMRI(functional MRI), 1973~
 - PET, 1965∼
 - NIRS, 1994~
 - Active method
 - Use magnetic stimulator

EEG (Brain Wave)

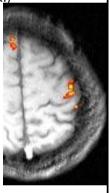
- EEG: Electroencephalogram
- 21~60 electrodes on the scull skin.
- Good points
- Cheap!Very fast (ms)
- Bad points
 - Low spatial resolution.

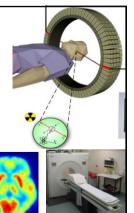
 - Skin-electrode conductance is unstable.
 Can measure "surface", but cannot measure "deep region"
- Still used in many interactive systems

MEG

- MEG:Magnetoencephalography
- Similar to EEG, but measure "magnetic field" induced by electrical current.
- Very, very tiny magnetic fi (about 1/10⁸ of the earth's magnetic field)
- Superconducting technology is used. (SQUID:Superconducting Quantum Interference Device)
- Good points
 - Very Fast (similar to EEG)
 - Can measure deep region. (magnetic field penetrates everything).
- Bad points
 - Surface sensors = 2D
 - Current sources = 3D mathematically very difficult to solve (almost impossible)

MRI


- · MRI:Magnetic Resonance Imaging
 - Very strong magnetic field make protons to "emit" electromagnetic waves.
 - By measuring this waves, can obtain 3D structures.
- Good points (compaired to X-ray CT)
 - No X-ray (=good for body)
 - Bone is not an obstacle
 - 3D data are obtained (X-ray CT:2D)
- Bad points
 - Very strong magnet (3T-): metal cannot be carried on.
 - Takes a few minutes for a single shot.
- Current standard for "brain imaging"


fMRI =functional MRI(機能的MRI)

- We must measure brain "activity", not shape.
 - By using MRI, measure "blood flow", by measuring two hemoglobins' ratio.
 - Hemoglobin: container of oxygion.
 - Red = many oxygen.
 Blue = few oxygen.
 - Good point
 - Location is very accurately determined.
- Bad point
 - Requires a few minutes for single shot.
- Current standard for brain functional imaging.

PET

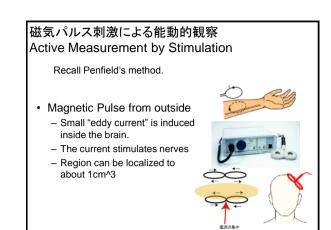
- PET = Positoron Emission Tomography
- Inject Radioactive ingredient as a "tracer" (O15)
- The "tracer" collapses, and generate two "γ waves" to the opposite direction. The detector detects the phenomenon.
- Position is determined by timing measurement.
- Blood flow can be measured.
- Good point A little faster than fMRI(a few second)
 - Bad points
 - radioactive ingredient is necessary - Lower resolution than MRI

NIRS

- NIRS=Near InfraRed Spectroscopy
 - Scull bone is transparent to InfraRed
 - Put InfraRed light, and obtain brain surface image.
 - Hemoglobin: container of oxygion.

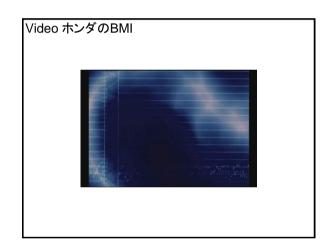
 Red = many oxygen.

 Blue = few oxygen.
- Good points


 No invasive. Easy to use.
- Bad points
 - Low spatial resolution
 - A few seconds are necessary

Summary of Brain Functional Imaging

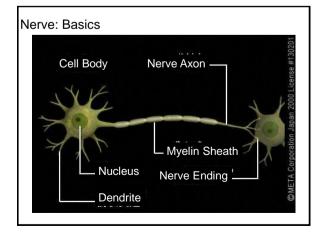
観察対象	空間解像度	時間解像度
Observe	Spatial Resolution	Temporal Resolution
Electric	Low	High
Electric	Low	High
Blood	High	Low
Blood	Mid	Mid
Blood	Mid	Mid
	Observe Electric Electric Blood Blood	Observe Spatial Resolution Electric Low Electric Low Blood High Blood Mid

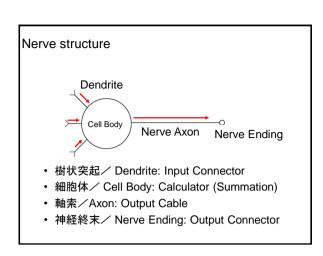


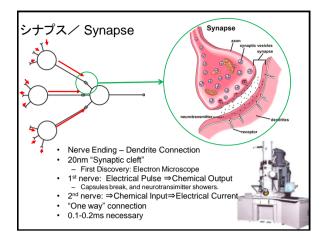
Brain Machine Interface (BMI)

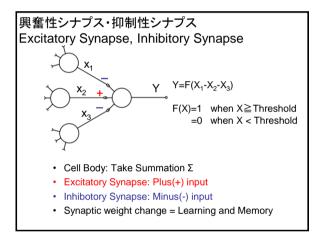
- Growing Field
- Mainly used EEG and NIRS (Fast response is necessary)
- For welfare: for ALS(Amyotrophic Lateral Sclerosis)
 - a progressive, fatal, neuro disease caused by the degeneration of motor neurons.
- Current status: Yes/No, or a few commands.

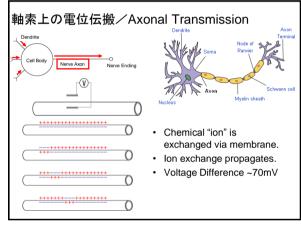
人間計測手法/Measuring Human

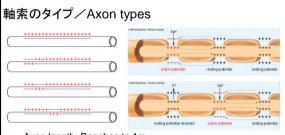


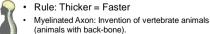





意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

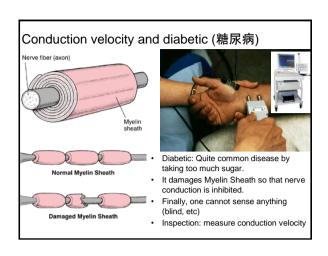

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

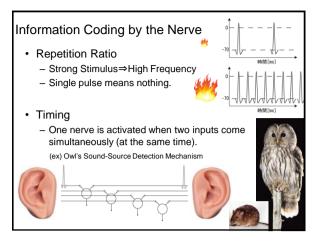




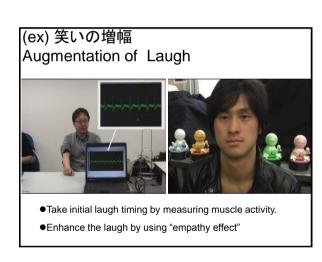
- · Axon length: Reaches to 1m.
- ミエリン髄鞘/Myelin Sheath: Insulator
- Electrical Current is limited to very small "gap" (ランビエ絞輪 ✓Ranvier Node)⇒Very Fast "Skip"
- 有髄神経: Myelinated axon=very fast
- 無髄神経: Unmyelinated axon = very slow

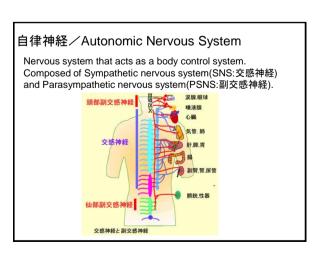
Cell Body Nerve Axon Nerve Ending	Nucleus Node of Ramier Schwann cell Nucleus
O	Chemical "ion" is exchanged via membrane.
0	Ion exchange propagates.Voltage Difference ~70mV

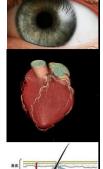

信号伝搬速度/Conduction Velocity						
	name	diameter(µm)	velocity(m/s)	role		
有髓神経 Myelinated	Αα	15	100	Many muscle nerves		
	Αβ	8	50	Many sensory nerves		
	Аγ	5	20	Some muscle and sensory nerves		
	Αδ	3	15	Fast pain		
無髄神経 Unmyelinated	С	0.5	1	Slow pain, heat, cold sensation, etc		



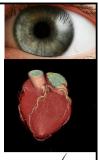
(animals with back-bone).


Other animal's strategy: Thicker the better. ex) Squid's gigantic nerve (diameter: 0.5mm)





Sympathetic nervous system (SNS:交感神経)


- Nervous systems for "Fight and Flight" (闘争と逃走)
- Eye Pupils(瞳孔)→Open
- · Heart(心臓) →Blood Pressure & Beat ↑
- · Skin(皮膚)
 - Sweat Grand(汗腺)→Sweat(発汗)
 - Hair Elector Muscle (立毛筋)→Contract(収縮)
- Blood Vessel(血管) →Expand 拡張(一部 収縮)

Parasympathetic nervous system (PSNS:副交感神経)

- Nervous systems for "calming" (沈静)
- Eye Pupils(瞳孔)→Close
- Heart(心臓) →Blood Pressure & Beat ↓
- Blood Vessel(血管) → Contract 収縮(一 部拡張)

情動を測定/Measure Emotional State

- Heartbeat & Blood Pressure (心拍数、血圧)
- Pulse Wave (脈波)
- GSR(galvanic skin response, 皮膚電気反応)

指尖容積脈波

「恋人との相性チェックに」、ロームが指輪型脈波センサーを開発 ロームは、大きさが指輪サイズと小さい脈波センサを「CEATEC ロームは、大きさか指摘サイスとりさい張波をピッサをICEATEC JAPAN 2010 (2010年1月5~9日、幕礁メッセ)に出風した。ヘル スケア機器の(活か、ゲーム機や音響機器などでミューズと小分野 に向けて開発中のものである。展示プースでは、ストレス康の測定 や恋人との相性チェックに応用したチモンストレーションを披露して この脈波センサは、LED光を指に当て、反射光または透過光を 類束の様子 フォトダイオードで受け取ってヘモグロビン流量の変化を検出するもの。LED光には黄緑色光など が使えるという。取得したデータを無線送信するための<u>モゾュール</u>も搭載する。村田製作所が出展 中の指輪型バルスメータと同様の構成だ

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

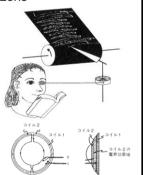
行動計測/Measuring Motion

- 機械式/ Mechanical
- 磁気式/Magnetic
- ビデオ式/Image Processing
- 一長一短/Pros and Cons
 - 遮蔽問題/Occulusion
 - ワークスペース/Workspace
 - 金属の影響/Effect of Metal

Simpler

- · Gaming controllers can be used as a measuring device.
 - 重心動揺計測⇒Wii Balance Board
 - 運動計測⇒Wii Remote
- 簡単なものは自作可能
 - 加速度センサ、ジャイロセンサ

Special Case: How to measure Eye movement


- アナログ測定/Analog measurement
 - コンタクトレンズ ∕ Contact Lens
 - 眼底電位/ Electrooculography
 - 強膜反射/ Limbus Tracking Method
- 画像処理/Computer Vision
 - パッシブ・アクティブな方法/Passive Active Methods

コンタクトレンズ/Contact Lens

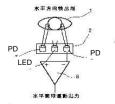
• カイモグラフ(Kymograph)

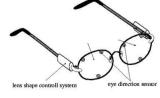
- ・ バリエーション
 - オプティカル・レバー法 コンタクトレンズに微小ミラー装着
 - サーチコイル法 コンタクトレンズにコイルを埋込



眼底電位

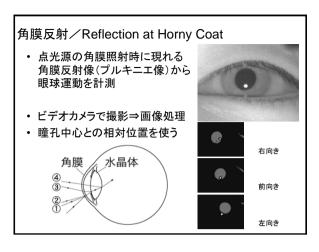
Electrooculography, EOG


- Horny coat(角膜) has ~1mV positive voltage to Retina(網膜)
- Electrodes(電極) around eyes. ⇒Measured voltage is proportional to eye rotation.
- Has wide range (velocity, frequency)
- · Accuracy not so good (1 deg~)



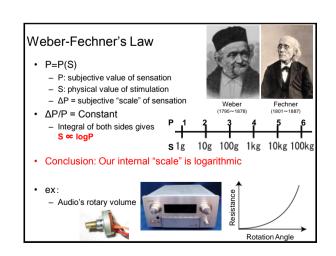
強膜反射/ Limbus Tracking Method

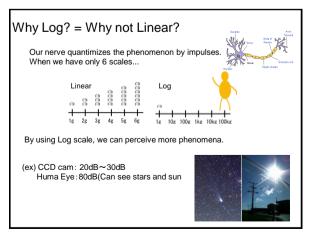
- Emit IR light to the eye, measure reflected light. 黒目と白目の境界に赤外線照射。反射光計測
- Received light: White part > Black part.
- · Good for horizontal eye motion.

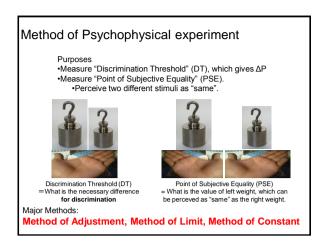


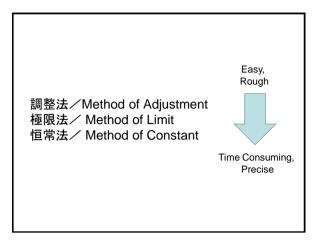

Computer Vision

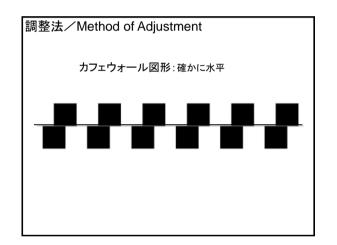
- · Capture eye image.
- By image processing (pattern matching), eye center is calculated.
- Reflesh rate = video rate.

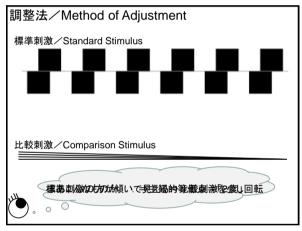


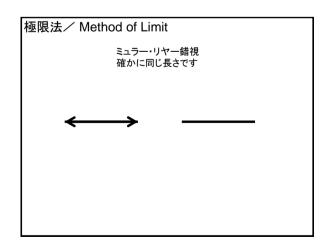


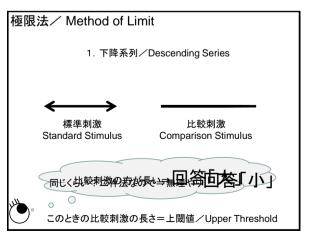


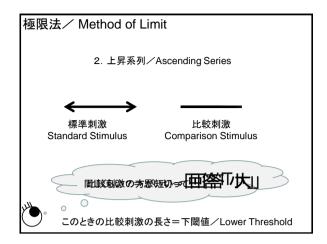


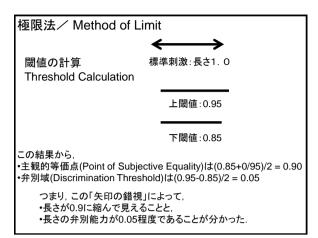


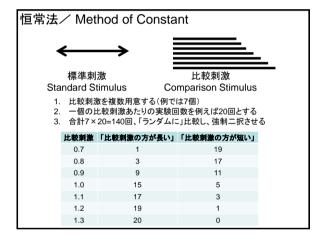


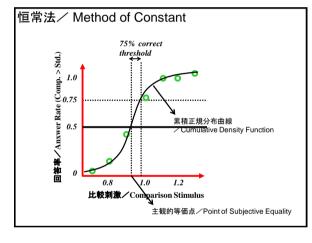












Today's Summary Measurement of Human perception is neccesary for interactive system design. • 脳活動計測/Measure brain activity. • 神経・筋活動計測/Measure nerve activity. • 自律神経系計測/ Measure autonomic nerve related phenomenon. • 運動計測/Measure motion. • 心理物理実験/Ask the user (psychophysics) They can be used both as a evaluation tool, and input method