

Interactive System インタラクティブシス テム特論(1)

> Hiroyuki Kajimoto kajimoto@hc.uec.ac.jp Twitter ID kajimoto Hash tag #itsys

言語 / Language

- ●講義は日本語、資料は英語。✓専門用語は併記
- Lecture in Japanese, handouts in English.

- ヒトの特性/Human perception
- 最新技術(センサ)/Today's sensing technology
- 最新技術(ディスプレイ)/Today's display technology

This Lecture aims to draw rough sketches of "From Human perception to Optimal Display Design"

Outline of the lecture

- 1. 人間計測手法/Measuring Human
- 2. 視覚/Human Vision System
- 3. 視覚センシング/Visual Sensing
- 4. 視覚ディスプレイ/Visual Display
- 5. 聴覚、聴覚インタフェース/Auditory Interface
- 6. 触覚、触覚インタフェース/Tactile Interface
- 7. 力覚、力覚インタフェース/Haptic Interface
- 8. 移動感覚インタフェース/Locomotion Interface

Schedule '

- 10/14 講義 Lecture
- 10/21 講義 Lecture
- 10/28 (Conference)
- 11/04 講義 Lecture
- 11/11 (Conference)
- 11/18 (Chofu-sai)
- 11/25 講義 Lecture
- 12/02 講義 Lecture
- 12/09 (Conference)
 12/16 講義 Lecture/発表論文選択
- 12/23 (holiday)
- 01/06 講義 Lecture
- 01/13 講義 Lecture
- 01/20 発表 Presentation
- 01/27 発表 Presentation02/03 発表 Presentation
- 02/10 発表 Presentation

小テスト/ Mini Test

- 講義の目的の一つが「基礎知識を得ること」なので、各回 小テストを行います。
- メールで回答。メールアドレス:report@kaji-lab.jp
- メールタイトル:インタラクティブシステム第〇回 (学籍) 章番号) 山田太郎
- ・締め切り:次回開始まで
- · E-mail report based mini tests are done every time.
- Send email to report@kaji-lab.jp
- · Email title: Interactive System-#N (student ID) Name
- Deadline: Before the beginning of the next lecture

発表/ Presentation

Your PowerPoint Presentation is required.

英語の論文を一つ読み、その内容を発表. (読む候補はこちらで用意します)

Read a paper and do presentation. (candidate papers will be announced)

- 今のところ発表10分, 質疑5分.
- 発表は全員で評価

The presentation is evaluated by all attend

- 1. 発表内容に対する理解度
- 2. 発表用資料(パワーポイント)の分かりやすさ
- 3. 発表の分かりやすさ
- 4. 質問に対する受け答え
- 5. 総合的な印象

評価/ Evaluation

- 点数=出席(40%)+小テスト(5%×8)+発表(20%)
- ただし発表をすることが評価の前提条件
- 電通大以外の場合=Attendance (60%) + Mini Test $(5\% \times 8)$
- Evaluation=Attendance (40%) + Mini Test (5% x 8) + Presentation (20%)
- · Presentation is required

Handouts on the web

http://kaji-lab.jp/ja/index.php?people/kaji/interactive

- -現在は2010年版がおかれています。徐々に変えていきます。 -Temporary, 2010 Japanese version. Will be replaced progressively.
- -<u>こちらのpdfには動画のリンク先(Youtube等)が埋め込まれ</u> ているので、紙資料よりも便利。次回から紙資料は配布せず、 講義の1時間前までにアップロードします。必要なら事前にダウ ンロードする等してください
- -From next time, lecture handouts will be online 1 hour before the lecture. Print it out if necessary.

Today's Topic:

人間計測手法/Measuring Human

ヒトの計測:

・インタラクティブシステムの構成要素 •インタラクティブシステムを評価するためにも必須

Measurement of human action/reaction

- •To be used as parts of the interactive system
- •To evaluate the system

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測/ Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

History of Brain Function Observation(1)

- Theory of localization of brain function:
 - 1909:ブロードマンBroadmann made "map" of the brain by visual observation. (microscope)
 - WWI: Better guns = many patients with "partial" brain

Broadmann's map: 52 regions of the cortex defined based on organization of cells.

History of Brain Function Observation(2)

- 1933:ペンフィールドPenfield Before Brain surgery for epilepsy, he stimulated brain directly by electrical needle. while the patients were awake. Result: Many functional region were found, including memory, sensory, and action.
- 1940: ロボトミーLobotomy Cut frontal lobe of the brain for mental disease, especially for violent patients. Result: Became calm, but also became like "robot"⇒Frontal lobe seems to be related to "emotion"
- 1960: X-ray CT gave clear view of the brain without surgery.

脳機能計測/Measurement of Brain Function

- Not the measurement of brain, but brain function. Must be done during some work. (see, touch, think)
- State-of-the-art measurement technologies are used.
 - Measure "Electrical Activity"
 - 脳波/EEG(brain wave), 1929~
 - 脳磁/MEG, 1972~
 - Measure "Blood Flow"
 - fMRI(functional MRI), 1973~
 - PET. 1965~
 - NIRS, 1994~
 - Active method
 - · Use magnetic stimulator

EEG (Brain Wave)

- EEG: Electroencephalogram
- 21~60 electrodes on the scull skin.
- Good points
 - Cheap!Very fast (ms)
- Bad points
 - Low spatial resolution.

 - Skin-electrode conductance is unstable. Can measure "surface", but cannot measure "deep region"
- · Still used in many interactive systems

MEG

- MEG:Magnetoencephalography
- Similar to EEG, but measure "magnetic field" induced by electrical current.
- Very, very tiny magnetic field (about 1/10^8 of the earth's magnetic field)
- Superconducting technology is used. (SQUID:Superconductin Quantum Interference Device)
- Good points
 - Very Fast (similar to EEG)
 - Can measure deep region (magnetic field penetrates everything)
- Bad points

 - Surface sensors = 2D
 Current sources = 3D
 mathematically very difficult to solve
 (almost impossible)

MRI

- MRI:Magnetic Resonance Imaging
 - Very strong magnetic field make protons to "emit" electromagnetic waves.
 - By measuring this waves, can obtain 3D structures.
- Good points (compaired to X-ray CT)
 - No X-ray (=good for body)
 - Bone is not an obstacle
- 3D data are obtained (X-ray CT:2D) Bad points
 - Very strong magnet (3T-): metal cannot be carried on.
 - Takes a few minutes for a single shot.
- Current standard for "brain imaging"

fMRI =functional MRI(機能的MRI)

- We must measure brain "activity", not shape.
 - By using MRI, measure "blood flow", by measuring two hemoglobins' ratio.
 - Hemoglobin: container of oxygion.
 - Red = many oxygen.
 Blue = few oxygen.
- Good point
 - Location is very accurately determined.
- · Bad point
 - Requires a few minutes for single shot.
- Current standard for brain functional imaging.

Summary of Brain Functional Imaging

手法	観察対象	空間解像度	時間解像度
Method	Observe	Spatial Resolution	Temporal Resolution
EEG	Electric	Low	High
MEG	Electric	Low	High
fMRI	Blood	High	Low
PET	Blood	Mid	Mid
NIRS	Blood	Mid	Mid
	-	•	-

Brain Machine Interface (BMI)

- Growing Field
- Mainly used EEG and NIRS (Fast response is necessary)
- For welfare: for ALS(Amyotrophic Lateral Sclerosis)
 - a progressive, fatal, neuro disease caused by the degeneration of motor neurons.
- Current status: Yes/No, or a few commands.

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure <u>autonomic nerve</u> related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

Nerve structure

- 樹状突起/ Dendrite: Input Connector
- 細胞体/ Cell Body: Calculator (Summation)
- 軸索/Axon: Output Cable
- 神経終末/ Nerve Ending: Output Connector

- ミエリン髄鞘/Myelin Sheath: Insulator
- Electrical Current is limited to very small "gap" (ランビエ絞輪 ✓Ranvier Node)⇒Very Fast "Skip"
- 有髄神経: Myelinated axon=very fast
- 無髄神経: Unmyelinated axon = very slow

信号伝搬速度/Conduction Velocity

	name	diameter(µm)	velocity(m/s)	role
有髓神経 Myelinated	Αα	15	100	Many muscle nerves
	Αβ	8	50	Many sensory nerves
	Аү	5	20	Some muscle and sensory nerves
	Αδ	3	15	Fast pain
無髄神経 Unmyelinated	С	0.5	1	Slow pain, heat, cold sensation, etc

- Rule: Thicker = Faster
- Myelinated Axon: Invention of vertebrate animals (animals with back-bone).
- Other animal's strategy: Thicker the better.
 - ex) Squid's gigantic nerve (diameter: 0.5mm)

(ex) 笑いの増幅 Augmentation of Laugh Take initial laugh timing by measuring muscle activity. ●Enhance the laugh by using "empathy effect"

情動を測定/Measure Emotional State

- Heartbeat & Blood Pressure (心拍数、血圧)
- Pulse Wave (脈波)
- GSR(galvanic skin response, 皮膚電気反応)

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, from our initial will to our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

行動計測/Measuring Motion

- 光学式/Optical
- 機械式/ Mechanical
- 磁気式/Magnetic
- ビデオ式/Image Processing
- 一長一短/Pros and Cons
 - 遮蔽問題/Occulusion
 - ワークスペース/Workspace
 - 金属の影響/Effect of Metal

Simpler

- · Gaming controllers can be used as a measuring device.
 - 重心動揺計測⇒Wii Balance Board
 - 運動計測⇒Wii Remote
- ・ 簡単なものは自作可能
 - 加速度センサ、ジャイロセンサ

人間計測手法/Measuring Human

意志から行動までの「どの経路を測るか」で5つの段階 Five layers, *from* our initial will *to* our perception.

- ●脳活動計測/Measure brain activity.
- ●神経・筋活動計測/Measure nerve activity.
- ●自律神経系計測 / Measure autonomic nerve related phenomenon.
- ●運動計測/Measure motion.
- ●心理物理実験/Ask the user (psychophysics)

- Measure relationship between subjective sensation and physical stimulation.

 ⇒ Measure Human's sensing "ability".
- Important value: "Discrimination threshold"
 - Limitation of "difference of two stimuli" ΔP, which is perceptible ex)
 - P=30g ⇒ ΔP=3g
 - P=3kg ⇒ΔP=300g
- Weber-Fechner's law (1834)
 - ΔP/P=Constant

Can be applied to most sensation.

Today's Summary

Measurement of Human perception is neccesary for interactive system design.

- 脳活動計測 / Measure brain activity.
- 神経・筋活動計測 / Measure nerve activity.
- 自律神経系計測 / Measure autonomic nerve related phenomenon.
- 運動計測/Measure motion.
- 心理物理実験/Ask the user (psychophysics)

They can be used both as a evaluation tool, and input method

小テスト/Mini Test 次回開始までにメール

以下の全てに100字以内程度で解答せよ/Answer all questions within 50 words

- 1. EEGについて説明せよ Explain EEG 2. MEGについて説明せよ Explain MEG 3. MRIについて説明せよ Explain MRI 5. PETについて説明せよ Explain PET
- 6. NIRSについて説明せよ Explain NIRS
- 不能神経と無髄神経の違いについて述べよ Describe difference between myelinated and unmyelinated nerves. 交感神経の活動で生じる現象を3つ挙げよ Quote three phenomena related to SNS(Sympathetic nervous system) activity.
- 10. 眼底電位計測について説明せよ Explain Electroculography (EOG)
- 11. 強腹反射法について説明せよ Explain Limbus Tracking Method 12. 角膜反射法について説明せよ Explain Eye Capture System Using Reflection 12. 角膜及射法について説明せよ Explain Eye Capture System Using Reflectio at Horny Coat
 13. ウエバー・フェヒナーの法則について説明せよ Explain Weber-Fechner's law
 14. 調整法について説明せよ Explain the method of adjustment.
 15. 極限法について説明せよ Explain the method of limit.

- 16. 恒常法について説明せよ Explain the method of constant.