#author("2020-12-29T15:00:36+00:00","default:kaji-lab","kaji-lab")
#author("2022-05-01T07:36:57+00:00","default:kaji-lab","kaji-lab")
This page is copied manually from Japanese page. For up-to-date information, please go to the [[original page:https://kaji-lab.jp/ja/index.php?research]].
-[[Youtube Kaji-Lab Channel:http://www.youtube.com/user/KajimotoLab]]

*Research in Kajimoto Laboratory[#va767b2f]

-2021
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ushiyama_chi2021_lbw.gif,src=hp_pic,nolink,100x56);>#ObjectModulation]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=suga_vrsj2021.gif,src=hp_pic,nolink,120x80);>#TouchXElecStimul]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takami_vrsj2021.gif,src=hp_pic,nolink,120x80);>#SlimeDisplay]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=vrsj2021_hamazaki.jpg,src=hp_pic,nolink,120x80);>#ChemicalTGI]]

-2020
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ushiyama_vibar_siggraph2020.gif,src=hp_pic,nolink,133x75);>#ViBaR]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=representative2.png,src=hp_pic,nolink,100x100);>#Elemphasize]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=perceived_area2.png,src=hp_pic,nolink,133x75);>#PerceivedArea]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kaneko_skinColorChange.png,src=hp_pic,nolink,195x105);>#SkinColorChange]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=TapeHanger.png,src=hp_pic,nolink,105x105);>#TapeHanger]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=device8.png,src=hp_pic,nolink,105x105);>#HousingAndShaft]]

-2019
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=electrical_mechanical2.png,src=hp_pic,nolink,200x75);>#electricalMechanical2]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HardSurface.png,src=hp_pic,nolink,200x75);>#HardSurface]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=non-contact_tactile_presentation_by_very_low_frequency_sound.gif,src=hp_pic,nolink,150x100);>#LowFreqNonContatct]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ushiyama2019_multi-point_tendonvibration.gif,src=hp_pic,nolink,150x100);>#Multi-PointTendonVibration]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ushiyama_eurohaptics2020.gif,src=hp_pic,nolink,106x75);>#Multi-PointTendonVibration]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tendon_vibration_interface.jpg,src=hp_pic,nolink,150x100);>#MotionlessHapticInterface]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=zhang_skin_haptic.png,src=hp_pic,nolink,220x100);>#SkinHaptic]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=roughslitPerception.png,src=hp_pic,nolink,180x100);>#slitperception]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HapticDeviceWithFishingRod.jpg,src=hp_pic,nolink,150x100);>#HapticDeviceWithFishingRod]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Haptopus_SIGGRAPH.gif,src=hp_pic,nolink,160x90);>#Haptopus]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Hapballoon_GIF.gif,src=hp_pic,nolink,160x90);>#Hapballoon]]

-2018
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ.png,src=hp_pic,nolink,75x75);>#textureVR]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=electrical_mechanical_stimulation.png,src=hp_pic,nolink,75x75);>#electricalMechanical]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=hapbelt&openfile=web_image.png,src=hp_pic,nolink,225x75);>#HapBelt2]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=representative_image_asihap.png,src=hp_pic,nolink,75x75);>#balloonshoes]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ_hanamichi.png,src=hp_pic,nolink,230x75);>#AncleHanger]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=%E3%82%B9%E3%83%86%E3%83%AC%E3%82%AA%E7%9A%AE%E8%86%9A%E5%A4%89%E5%BD%A2.png,src=hp_pic,nolink,109x75);>#StereoSkinDeform]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=vrsj2018_asazu_picture.jpg,src=hp_pic,nolink,85x55);>#FingerGripping]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=miyakami2018_clothespin.jpg,src=hp_pic,nolink,75x75);>#Clothespin]]
-2017
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HangerOVERgif.gif,src=hp_pic,nolink,133x75);>#HangerOVER]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HangerONgif.gif,src=hp_pic,nolink,133x75);>#HangerON]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HapBelt2.jpg,src=hp_pic,nolink,75x75);>#HapBelt]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Masking_ElectricalSensation.jpg,src=hp_pic,nolink,150x75);>#MaskingElect]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=softface.png,src=hp_pic,nolink,120x75);>#SoftDisplay]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ2017_miyakami_awa.gif,src=hp_pic,nolink,100x75);>#BubbleTactile]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=h_s.png,src=hp_pic,nolink,133x75);>#linkbar]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=robomech_roughness.png,src=hp_pic,nolink,100x100);>#Anisotropic]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=interaction1.jpg,src=hp_pic,nolink,85x55);>#WallMaterial]]

-2016
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Asiarepresentative.jpg,src=hp_pic,nolink,135x75);>#Ouijaboard]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Haptone.jpg,src=hp_pic,nolink,135x75);>#HapTONE]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takuto_finger_digestimage_R.jpg,src=hp_pic,nolink,75x75);>#VibSkin]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ2016_kon_AirHanger.gif,src=hp_pic,nolink,75x75);>#AirHanger]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=miyakami_VRSJ2016_pic.gif,src=hp_pic,nolink,75x135);>#FinMotorStickyEllastic]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=NoiriCarCM.gif,src=hp_pic,nolink,120x90);>#NoiriVrCar]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Kaneko_Finger.jpg,src=hp_pic,nolink,160x90);>#LateralFingerSkinMoving]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Nebaneba.jpg,src=hp_pic,nolink,90x90);>#NebaNeba]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Sakuragi.jpg,src=hp_pic,nolink,125x90);>#Utsubuse]]


-2015
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=TES20150512_ConceptImage.png,src=hp_pic,nolink,120x75);>#TES15]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2015_oishi_ihukukenin.JPG,src=hp_pic,nolink,120x75);>#ihukukenin]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=shitara-mouse.jpg,src=hp_pic,nolink,120x75);>#Kokkuri-Mouse]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kon_HS.gif,src=hp_pic,nolink,133x75);>#WAIST-HANGER]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=MTB.jpg,src=hp_pic,nolink,120x75);>#MTB]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=application.jpg,src=hp_pic.jpg,nolink,148x75);>#GelTouchpanel]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=KODAMAR_consept__254_180.jpg,nolink,120x75);>#KODAMAR]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=DCmotor.jpg,nolink,120x75);>#DCMOTOR]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Electrical-VS-Mechanical.jpg,nolink,120x75);>#ELECTRIC-VS-MECHANIC]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Glove.jpg,nolink,160x90);>#HapticGrove]]

-2014
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HamsaTouch.jpg,src=hp_pic.jpg,nolink,100x80);>#HamsaTouch]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC2014_Augmented%20Elevator.jpg,src=hp_pic.jpg,nolink,120x80);>#AugmentedElevator]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=sakuragi.jpg,nolink,100x75);>#TFOIF]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Projection-basedWholebodyTactileMini.png,nolink,100x75);>#ProjectionWholeBody]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=SAKOTSU%201.jpg,nolink,100x75);>#SAKOTSU]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=badminton_taira.jpg,nolink,116x75);>#Badminton]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2014_nakai_urukuma_R.jpg,nolink,100x75);>#UruuruNuigurumi]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Shower2.png,nolink,133x75);>#MusicShower]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takei_softness.jpg,nolink,82x82);>#ELECTROTACTILE_SOFTNESS]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takei_masterhand.jpg,nolink,130x107);>#MASTERHAND]]


-2013
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Itch_Relief.jpg,src=hp_pic,nolink,103x75);>#ROLLER]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Mutual_Referral.jpg,src=hp_pic,nolink,80x75);>#MUTUAL_REFERRAL]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=WristHanger.jpg,src=hp_pic.jpg,nolink,160x99);>#WristHanger]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Gel2013-2014.jpg,src=hp_pic.jpg,nolink,323x99);>#GelTouchpanel]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=WhiteCane.jpg,src=hp_pic.jpg,nolink,323x99);>#WhiteCane]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=macpro_taira.jpg,src=hp_pic.jpg,nolink,64x99);>#WaterE]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pikupiku.jpg,src=hp_pic.jpg,nolink,129x99);>#pikupiku]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=DEVICE.jpg,right,around,nolink,146x99);>#sub]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=audiotactile.jpg,src=hp_pic.jpg,nolink,140x99);>#audiotactile]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HACHIStack.jpg,src=hp_pic.jpg,nolink,176x99);>#HACHIStack]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=application2.jpg,src=hp_pic.jpg,nolink,122x99);>#KinectScoring]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=randomdot.jpg,src=hp_pic.jpg,nolink,120x100);>#randomdot]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=jointonation.jpg,src=hp_pic.jpg,nolink,122x99);>#jointonation]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ParticleJamming.jpg,src=hp_pic.jpg,nolink,122x99);>#ParticleJamming]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC2013_koge.jpg,src=hp_pic.jpg,nolink,122x99);>#Saferearcleaning]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC_Ogawa.gif,src=hp_pic.jpg,nolink,120x90);>#VocabularyLeaning]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Electrode_Pressure.jpg,src=hp_pic.jpg,nolink,90x100);>#El_Press]]

-2012
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=RubberWoodAlumi.jpg,src=hp_pic.jpg,nolink,176x90);>#RubberWoodAlumi]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tendon.jpg,src=hp_pic.jpg,nolink,90x90);>#tendon]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=clickingaccel.gif,src=hp_pic.jpg,nolink,213x90);>#accel]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=cushion.jpg,src=hp_pic.jpg,nolink,160x90);>#cushion]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2012_VisuoTactileCrossModal.jpg,nolink,147x90);>#VisuoTactileCrossModal]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=AR%20Toothbrush.png,src=hp_pic.jpg,nolink,120x90);>#ARToothbrush]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=linesensing.jpg,src=hp_pic.jpg,nolink,143x90);>#line]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=haction.jpg,src=hp_pic.jpg,nolink,90x90);>#haction]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=click.jpg,src=hp_pic.jpg,nolink,103x90);>#click]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tokutoku.jpg,src=hp_pic.jpg,nolink,103x90);>#Tokutoku]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pushbutton.gif,src=hp_pic.jpg,nolink,103x90);>#ganriki]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=skeletouch.jpg,src=hp_pic.jpg,nolink,120x90);>#skeletouch]]


-2011
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=piloerection(small).gif,src=hp_pic.jpg,nolink,120x90);>#piloerection]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VirtualChromatic.png,src=hp_pic.jpg,nolink,120x90);>#chromatic]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=katikati320.gif,src=hp_pic.jpg,nolink,120x90);>#katikati]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=hp_pic.jpg,nolink,120x90);>#elec]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tachibana_pic.jpg,nolink,120x90);>#shuchu]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Palm0.jpg,nolink,120x90);>#palm]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=mypage2.jpg,nolink,120x90);>#heartbeat]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tele-sofa.jpg,nolink,120x90);>#sofa]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=att1.jpg,nolink,120x90);>#att]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kehaikan.JPG,nolink,120x90);>#att]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=CylindricalElectrode.jpg,src=hp_pic.jpg,nolink,120x90);>#CylindricalElectrode]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HaCHIStick.jpg,src=hp_pic.jpg,nolink,120x90);>#HaCHIStick]]

-2010
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=inside.jpg,nolink,120x90);>#inside]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=PseudoVibro.png,nolink,120x90);>#pseudo]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=IMG_4280_s_320x240.jpg,nolink,120x90);>#kusuguri]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=yokoyama_EL.jpg,nolink,215x90);>#deaigashira]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=image3.gif,nolink,120x90);>#lenticular]]
[[&ref(装着の様子縮小版2.JPG,nolink,120x90);>#sasayaki]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tokkuri.JPG,nolink,120x90);>#tokkuri]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kachikachi.jpg,nolink,120x90);>#kachikachi]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=taimou.JPG,nolink,120x90);>#taimou]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=during_experiment_nov.jpg,nolink,91x90);>#guragura]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kisscom.png,nolink,120x90);>#kiss]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=smallnull3.gif,nolink,120x90);>#smallnull3]]

-2009
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=new.jpg,nolink,120x90);>#skin]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=device.JPG,nolink,120x90);>#h-PhS]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=APimg.jpg,nolink,120x90);>#apparent]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=slow01.jpg,nolink,120x90);>#slow]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=irukatikaku.gif,nolink,120x90);>#p_stimulus]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=l_surface01.jpg,nolink,120x90);>#l_surface]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=elasticity.gif,nolink,120x90);>#elasticity]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ElectroTouch.gif,nolink,120x90);>#ElectrocutaneousDisplay]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=steam.JPG,nolink,120x90);>#steam]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=zikken.jpg,nolink,120x90);>#texture]]
&br;
&br;

-2008
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=wgif.gif,nolink,120x90);>#laugh]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=speaker03.jpg,nolink,120x90);>#Speaker]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pencil_device.jpg,nolink,120x90);>#Pencil]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=toge.jpg,nolink,120x50);>#togetoge]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ph_pict1.jpg,nolink,120x90);>#Phantom]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=mimi_pulling.jpg,nolink,120x90);>#miminavi]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=wind_device.jpg,nolink,120x90);>#wind]]
&br;
&br;

-2007
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Handle.jpg,nolink,120x90);>#Handle]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=zipper00.jpg,nolink,120x90);>#zipper]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=harakiri.gif,nolink,120x90);>#harakiri]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kao765.jpg,nolink,120x90);>#kao765]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=camera.jpg,nolink,120x90);>#camera]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=shuhenshi.JPG,nolink,120x90);>#shuhenshi]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=robo.jpg,nolink,120x90);>#GroupRobo]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kehai-abst.jpg,nolink,120x90);>#kehai]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=hanger.jpg,nolink,120x90);>https://kaji-lab.jp/ja/index.php?rsearch%2Fhanger]]
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=bure.jpg,nolink,120x90);>#bure]]
&br;
&br;

-2006
[[&ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=FRS.jpg,nolink,120x90);>#FRS]]

*2019 [#ed89ecee]
**&aname(HardSurface); 運動する柔軟球による硬平板の表現 [#ed89ecee]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HardSurface.png,right,around,nolink,200x100);
When two fingers face and touch each other at the same speed, it is considered for both fingers to cause similar skin deformation in a boundary surface and the user feels the same force sensation as a hard surface. In a previous paper, we suggested that the finger model might feel harder when facing each other at the same speed than when the finger model does not move. In this paper, we did an additional experiment and a statistical analysis. As a result, we confirmed a significant difference.~
+竹内将大,村田華蓮,梶本裕之&br;
''運動する柔軟球による硬平板の表現''&br;
第24回日本バーチャルリアリティ学会大会,2019.9,東京大学 本郷キャンパス.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E9%81%8B%E5%8B%95%E3%81%99%E3%82%8B%E6%9F%94%E8%BB%9F%E7%90%83%E3%81%AB%E3%82%88%E3%82%8B%E7%A1%AC%E5%B9%B3%E6%9D%BF%E3%81%AE%E8%A1%A8%E7%8F%BE.pdf&refer=takeuchi,pdf);]&br;

**&aname(LowFreqNonContatct); 超低周波音圧変化を用いた非接触型触覚提示 (Non-Contact Tactile Presentation by Very Low Frequency Sound)[#ed89ecee]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=non-contact_tactile_presentation_by_very_low_frequency_sound.gif,right,around,nolink,150x100);
本研究では,受動的に,かつ,無意識的にユーザが触覚を得られる,「さりげない」触覚提示システムを提案する. これにより,様々な事情で能動的な行動を取れないユーザや,意識的なアクセス無しに意図した情報を伝えたい企業などの助けになることが期待される. そこで,まず本稿では「さりげない」触覚提示を実現するシステムのコンセプトを提案する. 次に,コンセプトを具現化するプロトタイプの 1 つとして,オーディオスピーカを用いて非可聴域の超低周波の音圧変化を生じさせることにより,ユーザがその空間にいるだけで全身に触覚を得られるシステムを開発したので,その概要とハードウ エア構成について報告する. 加えて,予備実験としてプロ トタイプシステムを体験した人々の感想から,プロトタイプシステムがユーザに与える感覚について考察する. ~
+柄沢未希子,梶本裕之:超低周波音圧変化を用いた非接触型触覚提示,第24回 日本バーチャルリアリティ学会大会, 2019.9 11-13. 東京大学.東京, 日本. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=non-contact_taactile_presentation_by_very_low_frequency_sound_20190723.pdf&refer=karasawa,pdf);]


**&aname(Multi-PointTendonVibration); 多点同時振動刺激による運動錯覚の増強 (Reinforcement of Kinesthetic Illusion by Simultaneous Multi-Point Vibratory Stimulation)[#ed89ecee]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ushiyama2019_multi-point_tendonvibration.gif,right,around,nolink,150x100);
腱への振動刺激により運動錯覚が生じることが知られているが,先行研究の多くは,主に 1点への振動刺激に対する錯覚の特性を調査するものであった.2 つの協同筋の 2 点の腱を振動刺激した際の運動錯覚に関する研究は存在するものの,より多数の協同筋を同時に振動刺激した場合については調査されていない.そこで本研究では,より強い運動錯覚を生起させることを目的として,腕、及び胸部に対して振動刺激を行い,生起した運動錯覚の強さについて調査する.
+牛山 奎悟, 田中 叡, 高橋 哲史, 梶本 裕之 : 多点同時振動刺激による運動錯覚の増強 第24回 日本バーチャルリアリティ学会大会, 2019.9 11-13. 東京大学.東京, 日本.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2019_ushiyama.pdf&refer=ushiyama,pdf);]

**&aname(MotionlessHapticInterface); 腱振動刺激による運動錯覚を用いた動かないハプティックインタフェースの予備的検討 (A Preliminary Investigation of Motionless Haptic Interface using Kinesthetic Illusion Induced by Tendon Vibration)[#ed89ecee]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tendon_vibration_interface.jpg,right,around,nolink,150x100);
モーションキャプチャ等の全身運動を伴うインタフェースには,広い空間の必要性や怪我の危険といった問題が存在する.この問題を解決するために,腱に振動刺激を与えた際に生じる運動錯覚を利用し,実際には動いていないにも関わらず体を動かした感覚を得られるインタフェースを提案する.本稿ではその可能性を調査するため,前腕の運動のみに限定した予備的な検討を行う.
+田中 叡, 牛山 奎悟,高橋 哲史, 梶本 裕之 : 腱振動刺激による運動錯覚を用いた動かないハプティックインタフェースの予備的検討 第24回 日本バーチャルリアリティ学会大会, 2019.9 11-13. 東京大学.東京, 日本.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2019_tanaka.pdf&refer=tanaka,pdf);]

**&aname(SkinHaptic); 異なる皮膚状態の触感再現に関する研究(Research on tactile reproduction of different skin conditions) [#ed89ecee]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=zhang_skin_haptic.png,right,around,nolink,230x100);
本研究は,指が本物の皮膚をなぞる間に生じた水平方向の振動と摩擦力を利用して異なる皮膚状態の触感を再現することを目的とする.指の皮膚をなぞる加速度を加速度センサーで記録し,それを振動として再生する.同時にモータで制御されたスライドボリュームによって指に反力や推進力を与え,摩擦感や滑らかさを表現する.さらに試作機には人肌ゲルが敷設されており,基本的な肌触りを確保し,振動と力を提示することで異なる皮膚の触感を表現する.~
In this study, we aim to present various skin condition with haptic display. We record the acceleration when a finger swipes on the skin, and replay it as vibration. The replaying part is composed of an artificial skin, two audio speakers to vibrate the skin horizontally, and a motion capture system to monitor finger motion. Our idea is that we assure basic feeling of skin, such as softness and smoothness, by using artificial skin, and add vibration to express roughness of the skin.~
+張建堯,小林優人,梶本裕之,松森孝平,齋藤直輝&br;
''皮膚状態の違いによる触感再現の予備的検討''&br;
日本機械学会ロボティクス・メカトロニクス講演会2019, 2019.6, 広島国際会議場, 広島市.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=2A1-T02.pdf&refer=zhang,pdf);]&br;
+張建堯,小林優人,梶本裕之,松森孝平,齋藤直輝&br;
''異なる皮膚状態の触感再現に関する研究''&br;
第24回日本バーチャルリアリティ学会大会,2019.9,東京大学 本郷キャンパス.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=4A-04.pdf&refer=zhang,pdf);]&br;

*2018 [#e6133d8b]
**&aname(HapBelt2); HapBelt: Haptic display for presenting vibrotactile and force sense using belt winding mechanism [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=hapbelt&openfile=web_image.png,right,around,nolink,300x100);
VRやナビゲーションへの応用を目的として、我々は「コンパクトさ」、「低エネルギー消費」、「高忠実な振動と力覚の同時提示」、「身体各所への拡張可能性」を備えた触覚提示手法として、DCモータで軽量なベルトを介して皮膚を駆動する触覚ディスプレイを提案する。2つのDCモータにAC信号を印加することによりベルトを振動させ、ベルトに接触している皮膚に直接振動提示を行う。またモータにDC信号を印加し、ベルトの巻取りによって皮膚変形を発生させることで力覚提示を行う。これらを組み合わせることで振動と力覚を同時に提示することが可能となる。本デバイスはシンプルな構造で大面積への提示が可能なため、様々な部位への応用が考えられる。本稿ではスマートフォン、手首、頭部のためのデバイスとその応用例を示す。~
We developed a haptic display that drives the skin via a lightweight belt with a DC motor. AC signals to the two DC motors generated vibration of the belt, and the vibration is directly presented to the skin in contact with the belt, while DC signals to the motors wind up the belt, and force sense is presented by causing skin deformation. By combining these two driving modes, high-fidelity vibration and directional force sensation can be presented simultaneously, with compact and low energy setups, which can be extended to various parts of the body.~
[[[Project page]:https://kaji-lab.jp/ja/index.php?hapbelt]]
+''T. Nakamura'', V. Yem, H. Kajimoto: HapBelt: Haptic display for presenting vibrotactile and force sense using belt winding mechanism., ACM SIGGRAPH ASIA 2017 Emering Technologies, Article No. 7,(2017).[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=hapbelt_SA2017CR_Ver2.pdf&refer=n.takuto,,pdf);]
+''中村拓人'',Vibol Yem, 梶本裕之:HapBelt: ベルト巻取り機構を用いた広帯域振動及び力覚提示装置,CEDEC2018. [[[link]:https://2018.cedec.cesa.or.jp/session/detail/s5ac0ca8f61f7e]]


**&aname(textureVR); 視触覚テクスチャ同時提示時に求められる一致性-ライン状グレーティングを用いた場合の検討- [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ.png,right,around,nolink,100x100);
VR体験に触覚を付与する方法として,VR空間に視覚的に表示するオブジェクトと同じ材質の物体を実際に体験者に触らせる手法が提案されてきた.しかしこの手法ではVR空間上のオブジェクトの種類と同じ数の物体を用意する必要がある.本研究の目的は,視覚的にも触覚的にもテクスチャを提示する状況で2つのモダリティが合っていると感じられるための条件を明らかにすることで用意すべき触覚テクスチャの種類を具体化することである.本稿では特にライン状グレーティングを用いた場合に一致していると感じる空間周波数の範囲を検討した.~
As a method of imparting a tactile sense to the VR experience, a method has been proposed in which the user actually touches an object of the same ma-terial as the object in the VR scene. However, this method requires to pre-pare the same number of objects as the type of objects visually presented. The purpose of this research is to clarify the conditions in which the two modalities are felt as subjectively matched, thereby reducing the number of tactile textures to be prepared. In this paper, we studied the range of the al-lowable spatial frequency of tactile stimuli that we feel consistent with the visual stimuli, in case of line gratings.
+山口瞬, 金子征太郎, 梶本裕之:視触覚テクスチャ同時提示時に求められる一致性-ライン状グレーティングを用いた場合の検討-, 第23回日本バーチャルリアリティ学会大会,2018.09,東北大学青葉山新キャンパス 青葉山コモンズ.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=Texture_vrsj2018.pdf,,pdf);];
+Shun Yamaguchi, Seitaro Kaneko and Hiroyuki Kajimoto: Allowable Range of Consistency Between the Visual and Tactile Presentations of a Linear Grating Texture, AsiaHaptics 2018, 2018.11, Songdo Conventia[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AsiaHaptic_submission.pdf&refer=yamaguchi]]
+山口瞬, 金子征太郎, 梶本裕之:視触覚同時提示時に求められる一致性(第2報)―触覚テクスチャ固定時の視覚テクスチャの許容範囲の検討―, 日本機械学会ロボティクス・メカトロニクス講演会2019, 2019.6, 広島国際会議場, 広島市, ポスター発表[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Robomech_yamaguchi.pdf&refer=yamaguchi]]





**&aname(electricalMechanical); 機械刺激と電気刺激の組み合わせによる触覚提示の強調 [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=electrical_mechanical_stimulation.png,right,around,nolink,100x100);
機械刺激による触覚提示は,実物体を肌に物理的に接触させるという原理ゆえ自然な触覚提示ができるが,一定以上の強い触覚を与える強度の機械刺激は肌に痕が残る等の問題を生じる可能性がある.対して電気刺激による触覚提示は感覚神経を直接刺激するため,皮膚を傷つけずに強い感覚提示が可能だが,実物体を触る体験に比べその自然さは減じる.そこで,電気刺激と機械刺激を組み合わせることで,自然さと強度を兼ね備えた触覚提示手法を提案する.~
Naturalistic tactile sensations can be elicited by mechanical stimuli because mechanical stimulation reproduces a natural physical phenomenon. However, a mechanical stimulation that is too strong may cause injury. Although electrical stimulation can elicit strong tactile sensations without damaging the skin, electrical stimulation is inferior in terms of naturalness. Here, we propose and validate a haptic method for presenting naturalistic and intense sensations by combining electrical and mechanical stimulation.

+水原遼,髙橋哲史,梶本裕之:機械刺激と電気刺激の組み合わせによる触覚提示の強調,第23回日本バーチャルリアリティ学会大会,2018.9, 東北大学 青葉山キャンパス.
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2018_proc_mizuhara.pdf&refer=mizuhara,pdf);]
+R.Mizuhara, A.Takahashi, H.Kajimoto, "Enhancement of Subjective Mechanical Tactile Intensity via Electrical Stimulation",Augmented Human 2019, 2019.3, Hôpital Robert Debré, Reims, France., Oral Session[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ah_mizuhara.pdf&refer=mizuhara,pdf);]

**&aname(balloonshoes);空気圧バルーンを用いた靴型高さ提示デバイスの昇降動作における高さ知覚の拡張に関する研究 [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=representative_image_asihap.png,right,around,nolink,125x125);
VR 空間内での歩行動作の際に生じる地形変化を現実空間にフィードバックする手法は多く研究 されている.特に,地面の高さ変化においては足が接地する床面あるいは靴底を物理的に昇降させること で高低差をユーザに提示する手法がとられている.しかし,靴型デバイスは床型デバイスに比べ小型な 反面,靴の重さや靴底が大きくなる問題がある.本研究ではこれらの問題を解決するため空気圧バルー ンを用いた軽量な靴型 VR デバイスを開発した.本稿では靴型デバイスを用いた靴型デバイスの高さ提 示に関する予備的実験の結果について報告する.
In recent years, to have a realistic experience in the VR space, various study and contents employed the sense of walking. In this study, we developed a light weight shoe-type VR device for uneven height presentation using pneumatically driven balloons. While previous shoe-type walking simulation device be- comes heavy, the balloon enabled light-weight wearable device. The weight of the presenting device was about 430g on one foot and the thickness of the shoe sole when non-operation was about 1.0cm. We report the method of presenting stepping on the stage by the shoes device.


+小林優人, 今悠気, 梶本裕之:空気圧バルーンを用いた靴型高さ提示デバイスの昇降動作における高さ知覚の拡張に関する研究, 第23回日本バーチャルリアリティ学会大会, 2018.9, 東北大学 青葉山新キャンパス 青葉山コモンズ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj_balloon.pdf&refer=kobayashi&refer=kobayashi]]&br;

**&aname(AncleHanger); 足首形状補完による足首ハンガー反射の効率化に関する研究 [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ_hanamichi.png,right,around,nolink,190x80);
ハンガー反射とは針金ハンガーを頭に被ると不随意に頭が回旋してしまう現象である. 現在ハンガー反射は頭以外に腰や手首,足首において同様の現象が観測されている. しかし, 足首におけるハンガー反射は他の部位に比べ強い回旋力は確認されていなかった. 我々はこの原因を足首の形状によるものであると考えた. 本稿ではシリコンゴムを用いた足首形状補完による効果的な発現の実験について報告する. 
-眞田華道,小林優人,中村拓人, 梶本裕之:足首形状補完による足首ハンガー反射の効率化に関する研究, 第23回日本バーチャルリアリティ学会大会,2018.09,東北大学青葉山新キャンパス 青葉山コモンズ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2018_proceeding.pdf&refer=sanada]]

**&aname(StereoSkinDeform);ステレオカメラを用いた三次元皮膚変形計測装置の開発 [#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=%E3%82%B9%E3%83%86%E3%83%AC%E3%82%AA%E7%9A%AE%E8%86%9A%E5%A4%89%E5%BD%A2.png,right,around,nolink,right,around,nolink,161x111);
テクスチャを触った際の皮膚変形を計測することは,触覚ディスプレイの開発において重要
である.この課題に対して同一屈折率のオイルに浸すことでテクスチャを透明化してカメラで皮膚
変形を計測する研究が存在するが,テクスチャ面に対して垂直方向の皮膚変形は計測されていない.
そこで本研究ではステレオカメラを用いて皮膚変形の水平・垂直成分を同時に計測可能とする装置
を提案する.
+田中叡,金子征太郎,梶本裕之:ステレオカメラを用いた三次元皮膚変形計測装置の開発, 第23回日本バーチャルリアリティ学会大会, 2018.9, 東北大学 青葉山新キャンパス 青葉山コモンズ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2018_Tanaka2_fix.pdf&refer=tanaka]]&br;

**&aname(FingerGripping);指の姿勢制御を用いた握力調節[#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=vrsj2018_asazu_picture.jpg,right,around,nolink,right,around,nolink,120x90);
握力の発揮には複数の指が関与し,相互作用することが知られている.この指の相互作用を制御することにより握力を調節することが出来れば,主観的な対象物体の重さ改変による重力感提示,運動中の適切な握力の教示等に利用できる可能性がある.本研究では特定の指の姿勢を制御することで握力が変化するという現象について報告する.
+浅津秀行,宮上昌大,梶本裕之:指の姿勢制御を用いた握力調節, 第23回日本バーチャルリアリティ学会大会, 2018.9, 東北大学 青葉山新キャンパス 青葉山コモンズ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2018_asazu.pdf&refer=publications]]&br;

**&aname(Clothespin);洗濯ばさみを用いた指への疑似力覚の提示手法[#wee1e283]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=miyakami2018_clothespin.jpg,right,around,nolink,right,around,nolink,120x120);
我々は洗濯ばさみを指に挟むことにより疑似力覚が生起可能であることを発見した.本手法は指に対して掌側から洗濯ばさみを挟むと屈曲方向に牽引感を感じ,甲側から洗濯ばさみを挟むと伸展方向に牽引感を感じる.本研究はこの現象を再現した疑似力覚提示デバイスを作成することを目的とする.&br;
Here, we describe a phenomenon in which a pseudo-force sensation can be elicited by pinching the finger of a participant using a clothespin. When the clothespin pinches the finger from the palm side, a pseudo-force is felt in the direction in which the hand naturally bends, and when the clothespin pinches the finger from the back of the hand, the pseudo-force is felt in the extension direction. We investigated the occurrence frequency of this phenomenon and assessed the possibilities for use as a human interface.
+宮上昌大,梶本裕之:洗濯ばさみを用いた指への疑似力覚の提示手法 ,第23回日本バーチャルリアリティ学会大会,2018.9,東北大学 青葉山新キャンパス 青葉山コモンズ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2018_miyakami.pdf&refer=publications]]&br;

*2017 [#jd4200cc]
**&aname(HangerOVER); HangerOVER:HMD-Embedded Haptics Display With Hanger Reflex[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HangerOVERgif.gif,right,around,nolink,133x75);~
As a simple method to experience VR content with high immersion, we propose HangerOVER, an HMD-embedded haptics display that can provide both tactile and force senses using the Hanger Reflex (Figure 1). The Hanger Reflex is a phenomenon in which the head rotates unintentionally when appropriate pressure distribution is applied to the head. As it accompanies illusory external force and motion, it can be used to express haptics event in VR environment, such as being pushed and punched by a game character. The developed device is composed of air-driven balloons that can express four types of haptics senses such as touch, pressure, motion & force, and vibration. It can not only improve the immersion of the user's VR experience, but also extends the degree of freedom of expression by game creators.
+今悠気,中村拓人,梶本裕之:空気圧アクチュエータを用いた頭部ハンガー反射回旋角度制御の試み,インタラクション2017(第21回一般社団法人情報処理学会シンポジウム).[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Interaction2017_kon.pdf&refer=kon]],[[[movie]:https://youtu.be/7pVqBH0_yIY]]~
+Yuki Kon, Takuto Nakamura, Hiroyuki Kajimoto, Taha Moriyama, Yasuyuki Yamaji: HangerOVER:HMD-Embedded Haptics Display With Hanger Reflex, &color(blue){''ACM SIGGRAPH 2017 Emerging Technologies''};.[[[link]:http://s2017.siggraph.org/content/emerging-technologies]][[[movie]:https://www.youtube.com/watch?v=dEPfSnJwuVM]][[[acm]:http://dl.acm.org/citation.cfm?id=3084842]] &color(red){''(Acceptance Rate 21%)''};~
+今悠気, 中村拓人, 梶本裕之:ハンガー反射を用いた力覚・運動提示内蔵型HMD,CEDEC2017. [[[link]:http://cedec.cesa.or.jp/2017/session/AC/s58dca1ea8a7f6/]][[[youtube]:https://youtu.be/SLjCrniWGck]]~
+2017年度未踏IT人材発掘・育成事業,触力覚提示内蔵型HMDのためのハンガー反射を用いた提示機構,採択&color(red){''(2016年度採択率8.9%)''};[[[web]:https://www.ipa.go.jp/jinzai/mitou/2017/koubokekka_index.html]]
**&aname(HangerON); HangerON: A Belt-type Human Walking Controller Using the Hanger Reflex Haptic Illusion[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HangerONgif.gif,right,around,nolink,133x75);
While walking with a navigation device, visual and auditory navigation information can require interpretation, and may distract the user from potential hazards. As a novel way to provide navigation information without distraction, we propose a method whereby the Hanger Reflex, which is an illusory phenomenon caused by haptic stimulus, influences walking. We have developed a way to stimulate the Hanger Reflex at the user's waist, thus eliciting rotation towards the left or right. In this paper, we describe three different uses of our system: 1) Normal walking navigation, in which the device automatically navigates the user to the destination; 2) remote control of one user by another user; and 3) self-control of walking.
+Yuki Kon, Takuto Nakamura, Hiroyuki Kajimoto, Rei Sakuragi, Hirotaka Shionoiri, Seitaro Kaneko: HangerON: A Belt-type Human Walking Controller Using the Hanger Reflex Haptic Illusion, &color(blue){''ACM SIGGRAPH 2017 Emerging Technologies''};.[[[link]:http://s2017.siggraph.org/content/emerging-technologies]][[[movie]:https://www.youtube.com/watch?v=7_LpCgLUu0Y]][[[acm]:http://dl.acm.org/citation.cfm?id=3084833]] &color(red){''(Acceptance Rate 21%)''};~
+HangerON : ハンガー反射を用いたベルト型歩行操作コントローラ,&color(blue){''DCEXPO2017 Innovative Technologies+''};.[[[link]:https://www.dcexpo.jp/innovative-technologies]]&color(red){''(Acceptance Rate 22%)''};~
**モバイルデバイスのためのベルト巻取り機構を用いた省エネルギーでの振動提示 (Low energy vibrotactile display using belt winding mechanism)[#saaec71a]
&aname(HapBelt);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HapBelt2.jpg,right,around,nolink,220x180);
For operation and experience in mobile devices, vibration feedback is used in addition to audio-visual feedback. In general, however, the vibrators need to drive the entire body of the device which is larger than the actuators, and it is difficult to present a strong vibration stimulus in a mobile environment requiring small size and low energy actuators. Therefore, we propose a device that drives by winding a thin belt with DC motors, and presents vibration by touching the belt with a fingertip. This method makes it possible to present vibration with low energy by vibrating a lightweight belt instead of the entire device body. In this paper, we measured the frequency characteristics of the proposed device and compared the power required for the vibration presentation with the conventional vibrators. As results of experiments, it was confirmed that the proposed device can present vibration with less energy than conventional devices.
-中村, Yem, 梶本:モバイルデバイスのためのベルト巻取り機構を用いた 
省エネルギーでの振動提示,日本機械学会ロボティクス・メカトロニクス講演会2017,2017.5,ビックパレットふくしま.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Takuto_belt_robomec2017_Ver4.1.pdf&refer=n.takuto,,pdf);]

** Masking electrical vibration sensation by mechanical vibration [#saaec71a]
&aname(MaskingElect);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Masking_ElectricalSensation.jpg,right,around,nolink,300x150);
指先への電気刺激で生じる圧覚と振動感覚に対して,掌への振動提示によって振動感覚をマスキングし,圧覚のみ残存させる手法である.

Electrical stimulation produces both vibration and pressure sensations, and it is difficult to control these sensations individually. It is known, however, that the vibrotactile sensation on an index finger can be masked using another vibration at the same frequency that is presented to the forearm. In our study, we use this phenomenon to mask the electrical vibration sensation in an index finger and retain the pressure sensation only.

&aname(SoftDisplay);
**実物の立体像に対する視触覚重畳(Visual and Haptic Modulation of a Virtual Image)[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=softface.png,right,around,nolink,240x180);
In recent years, augmented reality (AR) applications have become widely available to the general public. Many AR applications, such as makeup applications target the face. However, although an impression is strongly related to tactile feeling, such as texture and elasticity, today’s facial AR applications implement only visual modulation. In this research, we propose a system that combines the visual and haptic modulation of a virtual image of a real object, with the future goal of achieving visual and haptic face AR. A realistic three-dimensional image is presented as a virtual image of a real object projected by a half-mirror, visual deformation is implemented using by a touch display, and haptic deformation is realized by using a transparent film winding of a DC motor. Experiments show that in the haptic presentation part of this system, it is possible to present various hardnesses from human skin to rubber tires, and it is moreover possible to simulate the experience of touching a soft object by combining visual and haptic modulation.

-村田華蓮,大石恵利佳,中村拓人,梶本裕之,佐野貴洋,納谷昌之:実物の立体像に対する視触覚重畳,第22回日本バーチャルリアリティ学会大会,2017.9,徳島大学 常三島キャンパス.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2017_murata.pdf&refer=murata,pdf);]~

&aname(BubbleTactile);
**のりスプレーとコールドスプレーの混合物を用いた 電気的触感の提示手法[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ2017_miyakami_awa.gif,right,around,nolink,160x120);
我々は電気刺激提示時に生じるいわゆるビリビリ感を機械的刺激で再現する手法を発見した. 本手法はのりスプレーにコールドスプレーを吹きかけ,その混合物に対して指を押し当てるもので ある.これにより,主観的にビリビリ感とほぼ同一な触感を得ることができる.本発表ではこの機械 的刺激によるビリビリ感の機序について行った調査について報告する.

+宮上昌大,金子征太郎,Yem Vibol,梶本裕之:のりスプレーとコールドスプレーの混合物を用いた 電気的触感の提示手法 ,第22回日本バーチャルリアリティ学会大会,2017.9,徳島大学 常三島キャンパス.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2017_miyakami.pdf&refer=miyakami]]~


&aname(linkbar);
**Development of a Wearable Haptics Device that Presents the Haptics Sensation of the Finger pad to the Forearm. [#ud6003ff]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=h_s.png,right,around,nolink,160x120);
While many wearable tactile displays for the fingers, such as fingertip-type and glove-type displays, have been developed, their weight and size typically hinder the free movement of fingers, especially when considering the multi-finger scenario. We propose a method of presenting the haptics sensation of the fingertip on the forearm, not on the fingertip, to address this issue. A five-bar linkage mechanism was adopted to present a two-degree-of-freedom force. We conducted two experiments. In the first experiment, we presented a pressure sensation and a horizontal friction sensation perceived by the index finger to multiple sites of the forearm to search for a proper location of presentation, finding that the volar part of the wrist is optimal. On the basis of this result, we developed a device for the index finger and thumb, and conducted a second experiment to present the grasping force in a virtual reality environment. The realism of the experience in virtual reality was better when using the designed device than for no haptics cue or for vibration conditions.
+Taha Moriyama, Nishi Ayaka, Rei Sakuragi, Takuto Nakamnura, Hiroyuki Kajimoto. IEEE Haptics Symposium 2018, San Francisco
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Moriyama_HS.pdf&refer=research,pdf);]~
&aname(Anisotropic);
**異方性テクスチャ感提示による指の誘導手法の検討[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=robomech_roughness.png,right,around,nolink,160x160);
Most previous studies of tactile presentation for touch devices have presented tactile cues as a function of the position of the finger. In the current study, we examined whether directional information could be presented by modulating tactile cues depending on the direction of motion of the finger, us- ing a new method called “anisotropic tactile presentation”. Preliminary experi- ments confirmed that direction presentation and navigation to a goal could be achieved by decreasing the presentation of roughness when moving in the des- ignated direction. In addition, we conducted two experiments comparing the proposed system with a conventional position-based guidance method. The re- sults revealed that the proposed method enabled participants to search for the target more quickly and accurately compared with the conventional tactile presentation method.

-小林優人, 設楽幸寛, 金子征太郎, 梶本裕之:振動摩擦感提示による指の誘導手法の検討, 第22回日本バーチャルリアリティ学会大会, 2017.9, 徳島大学 常三島キャンパス.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR%E5%AD%A6%E4%BC%9A%E4%BA%88%E7%A8%BF_%E5%B0%8F%E6%9E%97_%E6%9C%80%E7%B5%82%E7%89%88.pdf&refer=kobayashi]]~
-小林優人, 設楽幸寛, 金子征太郎, 梶本裕之:異方性roughness提示を用いた方向提示によるタッチデバイスの操作誘導-異方性roughnessと等方性roughnessの手法間比較-,ロボティクス・メカトロニクス講演会2018 in Kitakyusyu, 2018.6, 北九州国際コンベンションゾーン.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E7%95%B0%E6%96%B9%E6%80%A7roughness%E6%8F%90%E7%A4%BA%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E6%96%B9%E5%90%91%E6%8F%90%E7%A4%BA%E3%81%AB%E3%82%88%E3%82%8B%E3%82%BF%E3%83%83%E3%83%81%E3%83%86%E3%82%99%E3%83%8F%E3%82%99%E3%82%A4%E3%82%B9%E3%81%AE%E6%93%8D%E4%BD%9C%E8%AA%98%E5%B0%8E.pdf&refer=kobayashi]]&br;
-Masato Kobayashi, Takahiro Shitara, Seitaro Kaneko, Hiroyuki Kajimoto: Operation Guidance Method for Touch Devices by Direction Presentation Using Anisotropic Roughness, Eurohaptics 2018 conference, 2018.6, Palazzo dei Congressi di Pisa (Pisa Congress Palace) &color(red){(Acceptance Rate of Oral session is 24%)};[[[link:https://link.springer.com/chapter/10.1007/978-3-319-93399-3_46]]]~

&aname(WallMaterial);
**壁材見本の展示を目的とする遭遇型VRシステムの提案 [#q40613db]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=interaction1.jpg,right,around,nolink,170x110);
近年,VR体験を利用した商品や製作物のショールームが増えてきている.しかし現在のVRショールームにおいてはものの材質感提示を行う仕組みはまだ導入されていない.本研究は材質感が重要になる要素の一つである壁材をVR上で展示することを目的とし,遭遇型の触覚提示によって材質感提示を切り替える手法を提案する.本稿では手法の提案に加え,システムにおいて必要な触覚装置の設計と,それに伴う予備実験について報告する.&br;
In this research, we propose a system that can change the tactile material of a wall surface, especially in a virtual reality show house. To present multiple types of wall materials, an encounter-type tactile sense presentation unit with several wall materials mounted on a uniaxial robot presents a specific type of wall material according to the hand movements of the experiencer. With this encounter-type approach, users can experience the tactile sensations of multiple kinds of realistic wall materials. We examined the specifications necessary for such presentation, constructed the system, and conducted a user study to examine the effect of the proposed system, comparing visual-only and visual + force conditions.
-山口瞬,塩野入央空,中村拓人,梶本裕之:壁材見本の展示を目的とする遭遇型VRシステムの提案, インタラクション2018(第22回一般社団法人情報処理学会シンポジウム),2018.03,学術総合センター.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=yamainter.pdf&refer=yamaguchi]]
-Shun Yamaguchi, Hirotaka Shionoiri, Takuto Nakamura and Hiroyuki Kajimoto: An Encounter Type VR System Aimed at Exhibiting Wall Material Samples for Show House, ACM ISS 2018(poster), 2018.11, Nomura Conference Plaza Nihonbashi. [[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ISS_ExtendAbstract_readyfix.pdf&refer=yamaguchi]]



*2016 [#jd4200cc]
&aname(Ouijaboard);
**観念運動を用いた擬似力覚提示(Pseudohaptics presentation by using ideomotor actions)[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Asiarepresentative.jpg,right,around,nolink,240x135);

The Ouija board is a game associated with a type of involuntary motion called ideomotor action. We sought to clarify the conditions under which Ouija board motion occurs, by comparing visual and vibrotactile cues. We hypothesized that the ideomotor action of the Ouija board is caused by two factors: 1) visual and haptic movement cues, which lead to user movement, and 2) interactions between multiple players, which enable each user to feel that she/he is not responsible for the movement. In this paper, we describe our 1-degree of freedom linear rail device, and detail two experiments conducted to test our hypotheses. In the first experiment, we investigated whether vision and tactile motion cues would cause ideomotor action when presented to a single individual. We found that simultaneous presentation of visual motion and tactile illusory forces is important for the occurrence of ideomotor action. In the second experiment, we investigated whether the ideomotor action was larger when there were two players. We found that the amount of displacement was reduced compared with the first experiment. Thus, we could not confirm the effect of multiple users on ideomotor action in the Ouija board game.

-設楽,中井,植松,Yem,梶本,嵯峨:観念運動を用いた擬似力覚提示(第3報)-1自由度リニアレールを用いた検証-,第16回 公益社団法人 計測自動制御学会 システムインテグレーション部門 講演会 SI2016,2016.12,札幌コンベンションセンター.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICE2016%20shitara%20final%20ver.pdf&refer=publications]]~
-T.Shitara, Y.Nakai, H.Uematsu, V.Yem, H.Kajimoto, and S.Saga: Reconsideration of Ouija Board Motion in Terms of Haptics Illusions. Euro Haptics Conference2016, July 4-7, 2016, London,United Kingdom.
([&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Euro2016%20shitara%20final%20ver.pdf&refer=publications,pdf);]
-T.Shitara, Y.Nakai, H.Uematsu, V.Yem, H.Kajimoto, and S.Saga: Reconsideration of Ouija Board Motion in Terms of Haptics Illusions (II) -Development of 1-DoF Linear Rail Device-. AsiaHaptics2016 2016.11.30-12.2, Kashiwanoha, Japan.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Asiahaptics2016%20shitara%20final%20ver.pdf&refer=publications]]~
-T.Shitara, Y.Nakai, H.Uematsu, V.Yem, and H.Kajimoto: Reconsideration of Ouija Board Motion in Terms of 
Haptic Illusions (Ⅲ) -Experiment with 1-DoF Linear Rail Device-.IEEE World Haptics Conference 2017, June 6-9, 2017, Munich, Germany.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=WHC%20shitara%20Edanz%20final%20ver.pdf&refer=shitara]]~
&br;

**HapTONE[#saaec71a]
&aname(HapTONE);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Haptone.jpg,right,around,nolink,240x135);

We developed a system called HapTONE that modulates the touch sensations of a keyboard. HapTONE presents the player with different vibrotactile sensations, not only after pressing the keyboard, but also during the pressing operation itself. This is done by using optical distance sensors and vibrators placed in a keyboard.
This system reproduces the touch sensation of a keyboard, stringed,wind, percussion or non-musical instrument. HapTONE is designed as a musical entertainment system for players themselves.;
-Daichi Ogawa, Kenta Tanabe, Vibol Yem, Taku Hachisu, Hiroyuki Kajimto. HapTONE: Haptic Instrument for Enriched Musical Play~
SIGGRAPH '16 Emerging Technologies, July 24-28, 2016, Anaheim, CA
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=160502_HapTONEfinal.pdf&refer=k-tanabe,pdf);]. 
-2016/09/15-18 :東京ゲームショウ2016 主催者企画 「エンターテインメントの未来」&br;「触覚提示技術のエンタテインメント展開」&br;
http://expo.nikkeibp.co.jp/tgs/2016/public/event/project.html
&br;
-2016/10/27-30 : DCEXPO2016 Innovative Technologies 2016 採択.

**振動重畳による指での擬似力覚増強現象(Pseudo force enhancement at fingertip by adding vibration)[#saaec71a]
&aname(VibSkin);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takuto_finger_digestimage_R.jpg,right,around,nolink,180x180);

The conventional haptic devices required a large space or expensive actuators. To cope the issues, many studies used a perceptual illusion to present perceptual force to the user. Especially, many studies using skin deformation have been proposed. However, the amount of the skin deformation is limited, and the amount of perceptual force that the illusion presents is also limited. We discovered a phenomenon that perceptual force caused by the strained skin can be enhanced by presenting vibration. In this phenomenon, the direction of the force switches when the direction of the skin strain changes. The result of the experiment suggested that the vibration enhanced the perceptual force caused by the skin strain in flexion direction. On the other hand, we could not conclude it in extension direction. However, some participants reported a strong force caused by the skin strain in extension direction when the vibration was presented.
**&aname(AirHanger);ハンガー反射を用いた腰部への回旋・並進力提示デバイス (Pseudo force presentation to the waist by using Hanger Reflex)[#saaec71a]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VRSJ2016_kon_AirHanger.gif,right,around,nolink,180x180);

ハンガー反射は針金ハンガーを頭に被ると不随意に頭が回旋する現象であり,全身での発生が確認されている.我々は歩行ナビゲーションへの応用を目指し,特に腰部ハンガー反射の歩行への影響を調査してきた.本稿では,空気圧アクチュエータを用いた腰部ハンガー反射を制御するデバイスの概要,および回旋運動と並進運動の生起について報告する.

Hanger Reflex is a phenomenon that produces an illusory force and involuntary rotation of the body parts by skin deformation. We have confirmed that Hanger Reflex at the waist significantly affects walking direction. In this paper, we developed a device that control the waist-type Hanger Reflex by using pneumatic actuators, and confirmed that rotation and translational motion of the waist can be generated by the developed device.
+今悠気,中村拓人,梶本裕之:ハンガー反射を用いた腰部への回旋・並進力提示デバイス,第21回日本バーチャルリアリティ学会大会,2016.9,つくば国際会議場.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2016_kon_AirHanger.pdf&refer=kon]]
+今悠気,中村拓人,梶本裕之:腰部ハンガー反射発生時の圧力分布の計測,第16回 公益社団法人 計測自動制御学会 システムインテグレーション部門 講演会 SI2016,2016.12,札幌コンベンションセンター.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICESI2016_kon_WaistPressureDistribution.pdf&refer=kon]]~
+Yuki Kon, Takuto Nakamura, Hiroyuki Kajimoto:Interpretation of Navigation Information Modulates the Effect of the Waist-Type Hanger Reflex on Walking, &color(blue){''IEEE 3DUI''}; , pp.107-115, Los Angels, USA, March 2017. &color(red){''(Acceptance Rate 32%)''};~
&color(blue){''Oral Presentation''}; [[[ieeexplore]:http://ieeexplore.ieee.org/document/7893326/]],[[[movie]:https://youtu.be/gaKdE0by22o]]~
+今,中村,梶本:腰ハンガー反射を用いた歩行ナビゲーションにおける教示の影響,日本バーチャルリアリティ学会論文誌,Vol.22,No.3,pp.335-344,2017.[[[pdf]:https://www.jstage.jst.go.jp/article/tvrsj/22/3/22_335/_pdf]]
**指腹部に配置した複数モータによる皮膚変形を用いた擬似力覚提示 (Pseudo force presentation by fingertip skin deformation)[#saaec71a]
&aname(FinMotorStickyEllastic);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=miyakami_VRSJ2016_pic.gif,right,around,nolink,180x180);
小型DCモータを指先に配置する擬似力覚提示装置が複数提案されているが, その多くは指の背側にモータを配置し, ベルトで指の腹側に皮膚変形を生じさせるものであり, 装着の手間・脆弱性などの課題が残っていた. 本研究では, これらの課題を解決するために, 複数のモータを指腹側に配置し, 皮膚変形を生じさせることにより擬似力覚を生じさせる手法を提案する.

There were numerous proposals to present pseudo-force sensation using skin deformation by a small DC motors. As most of them placed motors at dorsal side of the finger, and used a belt to present finger deformation, it has issues such as vulnerability and time of wearing.
To solve these issues, we propose mechanism that place multiple DC motors at palmar side of the finger, and directly cause skin deformation by rotor.
-宮上昌大,今悠気,VibolYem,梶本裕之:指腹部に配置した複数モータによる皮膚変形を用いた擬似力覚提示 ,第21回日本バーチャルリアリティ学会大会,2016.9,つくば国際会議場.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2016_miyakami.pdf&refer=kon]]

&aname(NebaNeba);
**圧力分布センサを用いた粘着感の測定 (Measurement of Stickiness with a Pressure Distribution Sensor)[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Nebaneba.jpg,right,around,nolink,180x180);
本研究では粘着感の定量的な計測を行うことを目的とした装置の開発および評価を行った.粘着感の測定には圧力分布センサを用い,接触部分の圧力分布を計測することで皮膚の感じる粘着感を分析した.一般的な圧力分布センサは押付力を測定することは可能であるが,引張力を測定することはできない.そこで本研究ではセンサ上にピンアレイを設置することで,その重量によってあらかじめ圧力分布センサにオフセットを与える手法を用いた.さらに実際の試料の粘着力の測定を試みた.
-亀岡,髙橋,ヤェム,梶本:圧力分布センサを用いた粘着感の測定,第21回日本バーチャルリアリティ学会大会,2016.9,つくば国際会議場.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2016_kameoka.pdf&refer=publications,pdf);]
-Takayuki Kameoka, Akifumi Takahashi, Yem Vibol, and Hiroyuki Kajimoto: Measurement of Stickiness with a Pressure Distribution Sensor. AsiaHaptics'16, Nov.29 - Dec.1, 2016, Kashiwanoha, Japan.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AsiaHaptics2016_Kameoka.pdf&refer=publications,pdf);]
&br;
&br;
&br;
&br;

&aname(NoiriVrCar);
**自動車をモーションプラットフォームとしたVRシステムにおける振動提示 (Vibrotactile Stimulation for a Car-based Motion Platform )[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=NoiriCarCM.gif,right,around,nolink,250x180);
我々はこれまで自動車をモーションプラットフォームとした VR システムを開発してきた.このシステムでは,自動車のアクセル開度とシフトの切り替えによってユーザーに揺動を提示するため,表現できる周波数が低いという課題がある.そこでシートやハンドルといった自動車のヒューマンインターフェース(HMI)に振動を提示できる振動子を埋め込み,自動車の揺動と組み合わせることでコンテンツの体感向上を目指す&br;
&br;
Virtual Reality systems with an automobile as the motion platform have been proposed. Whereas such a system presents only low-frequency body motion, we propose a method of presenting a wider frequency range by adding transducers. Two experiments were conducted. In the first experiment, the range of tolerable time differences between the swing and vibration was measured as between −16 and 67 ms. In the second experiment, we combined a swing and vibration with the virtual reality content and found that the combination provides better realism and naturalness.&br;
-塩野入央空,櫻木怜,小玉亮,岡崎龍太,梶本裕之:&br;
''自動車をモーションプラットフォームとしたVRシステムにおける自動車のHMI周辺における振動提示'',&br;
第21回日本バーチャルリアリティ学会大会,2016.9,つくば国際会議場[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR2016Noiri.pdf&refer=publications]]
-塩野入, 櫻木, 小玉, 岡崎, 梶本:&br;
''自動車をモーションプラットフォームとしたVRシステムにおける振動提示(第2報): 直動アクチュエータと振動子の組み合わせによる検証'',&br;
第22回日本バーチャルリアリティ学会大会,2017.9,徳島大学 常三島キャンパス[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=NoiriVRSJ2017.pdf&refer=shionoiri,pdf);]
-塩野入, 櫻木, 小玉, 梶本:&br;
''振動と揺動と効果音のクロスモーダル刺激による衝突感と材質感の提示'',&br;
エンタテインメントコンピューティング2018,2018.9,電気通信大学[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2018Ver2.pdf&refer=shionoiri,pdf);]
-塩野入, 櫻木, 小玉, 梶本:&br;
''自動車をモーションプラットフォームとしたVRシステムにおける振動提示(第3報): 振動と揺動と効果音のクロスモーダル刺激による VR 体験の変化'',&br;
第23回日本バーチャルリアリティ学会大会,2018.9,東北大学 青葉山キャンパス[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2018.pdf&refer=shionoiri,pdf);]
-H.Shionoiri, R.Sakuragi, R.Kodama, R.Okazaki, H.Kajimoto:&br;
''Vibrotactile Stimulation for a Car-based Motion Platform'',&br;
IEEE World Haptics Conference 2017, June 6-9, 2017, Munich, Germany[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=WorldHaptics2017WiP_Noiri.pdf&refer=shionoiri,pdf);]
-Hirotaka Shionoiri, Rei Sakuragi, Ryo Kodama, Hiroyuki Kajimoto &br;
''Vibrotactile Feedback to Combine with Swing Presentation for Virtual Reality Applications'' &br;
Eurohaptics 2018, June 13-16, 2018, Pisa, Italy[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Euro2018_noiri_publish.pdf&refer=shionoiri,pdf);]
&br;
&br;
&br;
&br;
**テクスチャ面に対する指表面水平皮膚変位の測定 (Method of Observing Finger Skin Displacement on a Textured Surface Using Index Matching)[#saaec71a]
&aname(LateralFingerSkinMoving);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Kaneko_Finger.jpg,right,around,nolink,250x120);
触覚ディスプレイの設計にあたり,皮膚表面変位と主観的触感の関係を明らかにすることは重要な課題の一つである.これまでの研究は平らな面に対しての指表面変位計測が主であった.しかしながら日常的に我々が触れるのは「ザラザラ」という言葉で代表されるようなテクスチャ面である.そのため我々は,テクスチャ面に対する皮膚変位を観察するため,インデックスマッチングを用いた測定手法を提案する.

Relationship between skin displacement and subjective sensation is indispensable for the design of tactile feeling display. Previous works on the observation of the skin displacement mainly used flat glass plate and a camera. However, the flat glass is not a representative tactile texture that we daily touch. We developed a system that can observe interaction between textured surface and finger skin by using technique known as index matching. The textured plate is immersed in the oil with the same refractive index, so that the texture became invisible. The finger skin is printed with markers, and its movement is analyzed by image processing. We also show a preliminary result of the observation when finger strokes on 0.5 mm interval grating.
-金子征太郎,梶本裕之:インデックスマッチングを用いたテクスチャ面に対する指表面変位の測定手法,日本機械学会ロボティクス・メカトロニクス講演会2016,2016.6,パシフィコ横浜.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomec_2016%E9%87%91%E5%AD%90.pdf&refer=kaneko]]
-S.Kaneko, H.Kajimoto: Method of Observing Finger Skin Displacement on a Textured Surface Using Index Matching. Euro Haptics Conference2016, July 4-7, 2016, London, United Kingdom.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=eurohaptics2016_kanekotest.compressed.pdf&refer=publications]]
&br;
&br;
&br;
&br;

**うつぶせ姿勢でのVR体験手法の提案 (VR experience by prone position)[#saaec71a]
&aname(Utsubuse);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Sakuragi.jpg,right,around,nolink,250x180);

Standing is a general posture in an interactive VR experience, but is has a big burden to the user by continuously lifting the arms. In this study, we propose to take prone position (i.e. lying with one’s stomach), and rotate the visual stimuli 90 degrees around the pitch axis. By this visual rotation, we expect that we feel as if we are standing, while the support of the arm becomes unnecessary. In this paper, we developed a system and evaluated the influence of the prone position on three-dimension interaction experience, in terms of the operation accuracy and fatigue.
-櫻木怜,Yem Vibol,梶本裕之:~
うつぶせ姿勢でのVR体験手法の提案~
第21回 日本バーチャルリアリティ学会大会 (20周年記念大会)2016.9. つくば国際会議場.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ_sakuragi.pdf&refer=sakuragi,pdf);]
&br;
&br;
&br;
&br;
&br;
&br;
&br;

*2015 [#jd4200cc]
&aname(2015);
**腱電気刺激を用いたハプティックインタフェースにおける刺激パラメータと生起力覚量の関係(Relationship between Force Sensation and Stimulation Parameters in Tendon Electrical Stimulation)[#saaec71a]
&aname(TES15);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=TES20150512_ConceptImage.png,right,around,nolink,300x180);

従来提案されてきた力覚提示装置は実際に物理的な力を発生させるために大型化しやすいという課題があった.我々はこれを小型化するため,腱部に存在する力覚受容器またはこれにつながる神経を直接電気刺激する腱電気刺激による力覚提示手法を提案してきた.本稿では手首に位置する腱上の皮膚表面に電気刺激を与えることで,力覚提示が可能であるか調査した.またこのとき生じる感覚の量が,用いる電流パルスの周波数および電流値によって調節可能であるか調査した.この結果手首への電気刺激により力覚が生じること,その力覚の方向は筋電気刺激とは向きが逆であること,さらに生起する力覚量を制御可能であることが分かった.

Most haptic devices have a common issue of large hardware setup, because they must present actual force. To cope with this issue, we have proposed a method to present force sensation using tendon electrical stimulation. In this paper, we investigated whether it is possible to present force sensation by giving an electrical stimulus through the skin surface of a wrist. We also investigated relationship between the amount of sensation and stimulation parameters. As a result, we found that the force sensation can be generated by the electrical stimulation to the wrist, the direction of the force sensation is opposite to the motion occurred by muscle electrical stimulation, and it is possible to control the amount of the sensation by pulse frequency.

-髙橋,田辺,梶本: 腱電気刺激を用いたハプティックインタフェースにおける刺激パラメータと生起力覚量の関係,第17回力触覚の提示と計算研究会,2016.3,東京工業大学すずかけ台キャンパス.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E5%8A%9B%E8%A7%A6%E8%A6%9A%E7%A0%94%E7%A9%B6%E4%BC%9A%E4%BA%88%E7%A8%BF_forUL.pdf&refer=publications,pdf);]
-Akifumi Takahashi, Kenta Tanabe, and Hiroyuki Kajimoto: Relationship between Force Sensation and Stimulation Parameters in Tendon Electrical Stimulation. EuroHaptics'16 Demonstration
-髙橋,田辺,梶本:腱電気刺激を用いたハプティックインタフェースの応用:マルチモーダル提示の検討,第21回日本バーチャルリアリティ学会大会,2016.9,つくば国際会議場.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2016_takahashi_UL_0.pdf&refer=publications,pdf);]
-Akifumi Takahashi, Kenta Tanabe, and Hiroyuki Kajimoto: Relationship between Force Sensation and Stimulation Parameters in Tendon Electrical Stimulation. AsiaHaptics'16, Nov.29 - Dec.1, 2016, Kashiwanoha, Japan. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AsiaHaptics2016_ATakahashi.pdf&refer=a.takahashi,pdf);]

**衣服牽引を用いた触力覚提示装置 (Haptics presentation by pulling clothes)[#saaec71a]
&aname(ihukukenin);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2015_oishi_ihukukenin.JPG,right,around,nolink,300x180);

視聴覚コンテンツの臨場感を高めることを目的として,身体の広範囲へ触力覚を提示する手法は数多く提案されているが,提示領域の狭さ,着脱の手間などの課題がある.我々はこの問題に対して,着用している衣服自体を牽引することにより衣服ずれを生じさせ,広範囲かつ簡易に触力覚を提示可能とする手法を提案した.

While numerous methods were proposed to present haptic sensation to the whole body to enhance the realism and immersion of audio visual content, they have common issues such that the presentation area is limited and attaching the devices require cumbersome procedures. To cope with these issues, we proposed a method to utilize displacement of clothes by pulling the clothes. 

-大石,高下,Kh.Sugarragchaa,梶本: 衣服牽引を用いた触力覚提示装置,エンタテインメントコンピューティング2015,2015.9,札幌市教育文化会館・北海道大学学術交流会館.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2015_oishi.pdf&refer=publications,pdf);]

&aname(Kokkuri-Mouse);
**観念運動を生起する擬似力覚提示マウス (Pseudohaptics presentation by using ideomotor actions)[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=shitara-mouse.jpg,right,around,src=hp_pic,nolink,271x180);

催眠術などにおいて,強い先入観を与えることにより主観的には不随意に生起される身体運動は観念運動と呼ばれる.本研究では観念運動の生起条件を解明し,再現・制御することにより,新たな擬似力覚提示手法として応用することを目標としている.我々は視覚刺激と触覚刺激を組み合わせて観念運動を生起する擬似力覚提示マウスを提案した.提案システムにおいて触覚刺激を含む条件で観念運動の生起に繋がる可能性が示唆された.

Body movements caused involuntarily by providing a strong prejudice is called ideomotor actions. Our goal is to clarify the occurrence conditions of ideomotor actions and use it to be applied as a new pseudo haptic technique. We proposed a pseudo haptic mouse device to induce ideomotor actions by combining visual and tactile stimulus. This system may lead to the occurrence of the ideomotor actions under conditions including a tactile stimulus has been suggested.

-設楽幸寛,中井優理子,植松遥也,Yem Vibol,梶本裕之: 観念運動を生起する擬似力覚提示マウス,第20回日本バーチャルリアリティ学会(2015年9月 芝浦工業大学),2015.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR2015_shitara.pdf&refer=publications,pdf);]
-設楽,中井,植松,Yem,梶本,嵯峨:観念運動を用いた擬似力覚提示(第2報)―指置き型デバイス2.5次元ディスプレイを用いた検証―,インタラクション2016(第20回一般社団法人情報処理学会シンポジウム,2016年3月 科学技術館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B32016%20shitara.pdf&refer=publications,pdf);]
&br;

**腰ハンガー反射が歩行に及ぼす影響 (Walking navigation by using waist-type Hanger Reflex)[#saaec71a]
&aname(WAIST-HANGER);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kon_HS.gif,right,around,nolink,271x180);

針金ハンガーを頭に被ると,意図せず頭が回ってしまう.この現象はハンガー反射と呼ばれており,手首や腰でも発生することが確認されている.本研究では腰でのハンガー反射とその歩行への影響に着目した.実験の結果,腰でのハンガー反射はハンガー反射の回旋方向と同一方向に歩行を曲げることが確認され,ナビゲーションインターフェースとしての応用の可能性が示唆された.

When a wire hanger is placed on the head, the head rotates involuntarily. This phenomenon is called the
“Hanger Reflex”, and it was also found at the waist and wrist. This paper focuses on the waist-type hanger reflex and
its effect on walking. We found that the waist-type hanger reflex turn the direction of walking to the same direction as
the rotation direction of hanger reflex, which can be applied to navigation interface.

-今悠気, 中村拓人, 佐藤未知, 梶本裕之:腰ハンガー反射が歩行に及ぼす影響,日本機械学会ロボティクス・メカトロニクス講演会2015,2015.5,みやこめっせ.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=2A1-C04.pdf&refer=publications]]~
-Yuki Kon,Takuto Nakamura,Michi Sato,Hiroyuki Kajimoto:Effect of Waist-type Hanger Reflex on Walking for Navigation~
IEEE World Haptics Conference 2015, June 22-26, 2015, Chicago, USA.~
demo,[[[movie]:https://youtu.be/5tr2TNFGmWw?t=3m50s]],[[[movie]:https://youtu.be/VcriAlZAvdw?t=12m51s]]~
-Yuki Kon,Takuto Nakamura,Michi Sato,Hiroyuki Kajimoto:Effect of Hanger Reflex on Walking~
IEEE Haptics Symposium 2016, April 8-11, 2016, Philadelphia, USA.~
Oral Presentation [[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=HS_CameraReadyPaper.pdf&refer=kon]]~


&aname(MTB);
**Multiple Texture Button[#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=MTB.jpg,right,around,nolink,221x148);

A physical button that is mounted in a mouse, a keyboard, or a shutter of a camera, provides both force and tactile feedback when a user presses it. It is certainly that users can recognize the press and input through the sensation of “click” vibrations. However the click sensation can be generally presented in only one for one physical button. We designed Multiple Texture Button that presents a variety of sensations by combining the actual physical buttons and vibration. To implement a video game application, touch sensation of the button can be presented and changed in real time to be suitable for the context of the content. We developed a Multiple Texture Button for presenting the click sensation by providing decaying sinusoidal vibration and sampled vibration waveform at the moment of press.

&br;
&br;


**弾性素材のせん断変形を用いたタッチパネルへの水平方向力入力とその応用 (Horizontal tactile sensor for touchpanel using elastic sheet)[#saaec71a]
&aname(TFOIF);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ElasticTouchPanelmini.jpg,right,around,nolink,271x180);

現在多くのタッチパネルは静電容量方式で入力の検出をしており,指の座標検出や接触面積計測が可能である.一方,指の力に関しては垂直方向成分のみ接触面積の変化による推定が実現されている.そこで本研究では弾性素材を使用し,非電源かつ簡易にタッチパネルへの水平方向の力入力を実現する手法を提案してきた.さらに指の接触面積情報から力入力とスワイプの判別をすることで,力入力とスワイプの両方の入力を可能な新たなアプリケーションを開発した.

Many capacitive touch panels detect the position and contact area of the user finger, and can estimate the vertical force from the change in the contact area. However, they cannot estimate the tangential force. We have proposed methods of tangential force input for touch panels using elastic materials, developed a new method to distinguish force input and swipe input. We also proposed some applications that utilize the two input modes.

-中井,工藤,岡崎,梶本: 弾性素材のせん断変形を用いたタッチパネルへの水平方向力入力:入力モードの判別,エンタテインメントコンピューティングシンポジウム(2015年 9月 北海道)[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2015nakai.pdf&refer=publications]]



**KODAMAR:augment impact sound in badminton(バドミントンにおける打撃音拡張)[#saaec71a]
&aname(KODAMAR);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=KODAMAR_consept__254_180.jpg,right,around,nolink,271x180);

バドミントンをはじめとするラケットスポーツにおいて,ボールを打った際の打撃音はショットの印象を決定付ける重要な手がかりである.プロフェッショナルの知覚している打撃音を一般の人が打った際に提示することでプロフェッショナル体験の実現を目指す.本稿では実際にバドミントンでスマッシュを打った際の音拡張を行い,その効果を調査した.その結果,打撃音を提示することによりショットの爽快感が増すことが示された.

The impact sound is very important clue that determines the impression of a shot in racket spots, including badminton. In this paper, we augment the impact sound when you hit the ball. And we investigate the effect. As a result, refreshing sensation become increase by presenting a impact sound.

-中村たいら,小川大地,梶本裕之:バドミントンにおける打撃音拡張に関する研究,エンタテインメントコンピューティング2015,2015.9,札幌市教育文化会館・北海道大学学術交流会館.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ec2015_taira_FNL.pdf&refer=taira]]

**モータの回転加速度を用いた振動触覚・疑似力覚提示 (Vibrotactile and pseudo haptics presentation by using DC motor)[#saaec71a]
&aname(DCMOTOR);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=DCmotor.jpg,right,around,nolink,271x180);

DCモータに交流電圧を印加することで、モータのロータ(回転軸)は加速または減速で回転する。その際、モータのスタータ(モータの筐体)に反力が発生し、反力の強度や方向の変化によって振動が生じる。これに基づいて、本研究では、モータの回転加速度を用いて新たな振動触覚・疑似力覚提示手法を提案する。回転モータを用いることで大振幅の振動提示が可能となり,バネ成分を持たないために共振の問題がなく,低周波成分の提示も容易となる。

When a DC motor is supplied by an alternative current, the rotor of the motor accelerate or decelerate and it generates counterforce on the stator (motor’s case). The change of value and direction of counterforce produces vibration. Base on this, in our study, we propose to use a motor rotational acceleration for vibrotactile and pseudo-force presentation. The advantages are that, there is not amplitude limitation and suitable of low frequency presentation, and the resonance issue will not occur because there is not spring component.
-ヤェム,岡崎,梶本:モータ回転加速度を用いた振動触覚提示の周波数特性,第20回日本バーチャルリアリティ学会(2015年9月 芝浦工業大学),2015.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2015_yem_22A-4.pdf&refer=publications,pdf);]
-Yem Vibol, 岡崎 龍太, 梶本裕之: モータ回転加速度を用いた振動触覚及び擬似力覚提示, 第16回 公益社団法人 計測自動制御学会 システムインテグレーション部門 講演会,(2015年12月,名古屋国際会議場),2015[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICE-SI2015_yem_1L2_5.pdf&refer=publications,pdf);]

**電気刺激によって生じる触覚の機械刺激との比較評価 (Comparison of electro-tactile sensation with mechanical sensation)[#saaec71a]
&aname(ELECTRIC-VS-MECHANIC);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Electrical-VS-Mechanical.jpg,right,around,nolink,271x180);

電気触覚ディスプレイは皮膚への通電により触覚を提示する手法であり,機械刺激に比べて簡便にシステムを構築できる等の利点がある。しかし、機械刺激と電気刺激それぞれによって生じる触覚の関係については明らかになっていない。本研究では、電気刺激と機械刺激の触覚を比較し、特に電気刺激における陽極刺激と陰極刺激を行った際の生起感覚が機械刺激でどのように表現されるかについて検討する。

Electrotactile display is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the relationship between the sensation produced by electrical and mechanical stimuli is still not clear. This study directly compares the tactile sensation produced by electrical stimulation to that produced by mechanical stimulation, and examines how to express the electrotactile sensation of anodic and cathodic stimulation via the sensation of mechanical stimulation.

-Yem Vibol, 梶本 裕之: 電気刺激によって生じる触覚の機械刺激との比較評価, 第16回 公益社団法人 計測自動制御学会 システムインテグレーション部門 講演会,(2015年12月,名古屋国際会議場),2015[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICE-SI2015_yem_1L1_6.pdf&refer=publications,pdf);]

*2014 [#jd4200cc]

**タッチパネルのための操作指とは異なる指への触覚提示 (Tactile presentation to back of the smartphone)[#saaec71a]
&aname(TFOIF);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=sakuragi.jpg,right,around,nolink,200x150);

タッチパネルにおける触覚呈示を実現した従来の提案手法の多くは,画面に触れる指(操作指)を呈示対象としていた.そのため画面の視界を遮らない触覚呈示手段が必要であり,そうした呈示手段で高密度に触覚を呈示することは困難であった.一方,タッチパネル裏面であれば視界の問題から開放されるため高密度な触覚呈示が可能となり,先行研究でも裏面全体に触覚呈示する手法の提案が見られる.しかし裏面全体への高密度触覚呈示はコストが高い.そこで本研究では表面の操作指の動きに追従し,その指を中心とした一定範囲内の触覚を,裏面でデバイスを支える指だけに呈示する手法を提案する.今回は触覚呈示先を操作指と異なる指とした際の触知覚能力を検証した.

-Kh.Sugarragchaa, 中井, 梶本: タッチパネルのための操作指とは異なる指への触覚提示, 第19回日本バーチャルリアリティー学会大会(2014年9月 名古屋大学), 2014. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2014_Sura_ver6.pdf&refer=publications,pdf);]

**鎖骨を介した振動伝播による体内触覚提示 (The Internal Body Tactile Presentation by using Vibration Propagation through the Clavicle) [#saaec71a]
&aname(SAKOTSU);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=SAKOTSU%201.jpg,right,around,nolink,200x150);

近年視聴覚コンテンツの臨場感向上を目的とした全身触覚提示デバイスが数多く提案されている.こうしたデバイスは共通して体格差による着脱の制限や煩雑さの問題を持つ.そこで本研究は身体に装着する振動子の数を可能な限り減らし,かつ広範囲に振動を提示するため,ユーザの骨を介して身体広範に振動を提示することを試みる.本稿では,身体広範囲に振動を伝達可能な骨部位の選定を行い,結果として選定された鎖骨に適した振動提示デバイスを製作した.

Recently, many whole body tactile display devices for improving reality or presence of the contents have been proposed. These devices commonly have the same limitations or complexity when putting on and taking off the device, because such devices normally contain many actuators and they all should be tightly fitted to user’s body. In this study, we aim to present the vibration to a wide area in the body through the user’s bone to solve this problem. In this paper, we chose the bone that has the greatest vibration distribution efficiency in the body by psychophysical experiment.

-岡崎,櫻木,Yem,梶本:鎖骨への触覚提示による体表伝搬振動とその音楽体験への影響,日本バーチャルリアリティ学会論文誌(採録決定)
-Rei Sakuragi, Sakiko Ikeno, Ryuta Okazaki, Hiroyuki Kajimoto.:CollarBeat: Whole Body Vibrotactile Presentation via the Collarbone to Enrich Music Listening Experience,International Conference on Artificial Reality and Telexistence (2015). [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ICAT2015sakuragi.pdf&refer=sakuragi,pdf);]
-Rei Sakuragi, Sakiko Ikeno, Ryuta Okazaki, Hiroyuki Kajimoto.: Whole Body Vibrotactile Presentation with Music via the Clavicle, In Proceedings of World Haptics Conference, June 22-26, Chicago, 2015.
-櫻木,池野,岡崎,梶本: 全身触覚における鎖骨部位の有効性と評価,インタラクション2015(第19回一般社団法人情報処理学会シンポジウム) 2015. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=interaction2015_sakuragi.pdf&refer=publications,pdf);]
-櫻木,池野,岡崎,梶本 : 鎖骨を介した振動伝播による体内触覚提示,エンタテインメントコンピューティング2014(2014年9月 明治大学 中野キャンパス)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2014Sakuragi.pdf&refer=publications,pdf);]

**HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display (スマートフォンと電気触覚ディスプレイを用いた手掌部における視覚-触覚変換) [#saaec71a]
&aname(HamsaTouch);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HamsaTouch.jpg,right,around,nolink,200x160);

This paper documents the development and evaluation of a novel tactile vision substitution system (TVSS) for the people with visual impairments. The system is composed of an electro-tactile display with 512 electrodes, the same number of optical sensors beneath each electrode, and a smartphone with a camera and an LCD. The smartphone acquires the surrounding view, conducts image processing and displays the image on the LCD. The image is captured by the optical sensors and converted to a tactile image by the electro-tactile display. While the concept of the TVSS is classic, combining the commonly available mobile device and electro-tactile display enables a low cost yet powerful and compact system. Furthermore, optical communication architecture enables an open development environment.

[[[YouTube:https://www.youtube.com/watch?v=dEWokSm-bdE&index=2&list=PL07E8D1076799CE14]]]~
- H. Kajimoto, M. Suzuki, Y. Kanno: HamsaTouch: Tactile Vision Substitution with Smartphone and Electro-Tactile Display , CHI 2014 (Extended Abstracts), April 26-May 1, 2014, Toronto, Canada. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=kajimoto_WorkInProgress_chi2014.pdf&refer=publications,pdf);]

**Augmented Elevator:エレベータを用いたモーションプラットフォームの開発 (Motion platform using elevator)[#saaec71a]
&aname(AugmentedElevator);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC2014_Augmented%20Elevator.jpg,right,around,nolink,271x180);

本研究ではエレベータを利用した新たなモーションプラットフォームの開発を行う.エレベータの設置台数は非常に
多く,至る所で利用できる点で従来のモーションプラットフォームより優れている.エレベータをモーシ
ョンプラットフォームとして利用する際の制約のひとつである有限な可動閾に対し,視覚誘導性自己運動感覚を用い
ることでエレベータによる移動感覚強度保ちつつ,ユーザに移動方向のみを錯誤させることで解決を試みる.被験者
実験の結果,エレベータの移動方向と反対方向に移動する視覚刺激を提示することでエレベータの移動方向を錯誤さ
せることが可能であることが示唆された.またこのときの移動感覚強度についても検証したところ,視覚刺激のみで
錯誤させるときよりも強い移動感覚が生起することが明らかとなった.さらに本現象を用いたアプリケーションとし
て無限上昇するエレベータによる宇宙旅行体験を提供するコンテンツを開発した.

This  paper  presents  Augmented  Elevator,  which  uses  a  conventional  elevator  as  a  motion  platform.  Using  the elevator is more practical than using a complex mechanical motion platform in terms of setting cost and space since there are plenty of elevators all over the place. This paper describes an approach to expand perceived range of motion of the elevator by visual illusion of self-motion (vection). The first experiment shows that it is possible to change the perceived direction of the elevator by providing optical flow whose direction is opposite to that of the elevator. The second experiment shows that theintensity of the illusion induced by both of the elevator and vection is stronger than that induced by only vection. As an application, we achieved the infinitely ascending elevator, which provides experience of a cosmic journey. 

-高下昌裕, 蜂須拓, 梶本裕之: Augmented Elevator:エレベータを用いたモーションプラットフォームの開発 .エンタテインメントコンピューティング,2014.9. 明治大学 中野キャンパス.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2014_Augmented%20Elevator.pdf&refer=publications,pdf);]

**プロジェクションを用いた全身への触覚呈示ディスプレイ (The whole-body tactile presentation using projector) [#saaec71a]
&aname(ProjectionWholeBody);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Projection-basedWholebodyTactileMini.png,right,around,nolink,260x195);

全身への触覚呈示を行うには,触覚呈示素子の配線によって身体動作が阻害される問題や,個人ごとに装着した触覚提示素子の位置合わせの問題を解決する必要がある.本研究では触覚呈示素子の制御にプロジェクタの光を用いるというProjection-based Technologyの触覚版で上記の問題を解決する.各ユニットは振動子と光センサによって構成され,投影された映像の明るさに基づいて各素子が動作することで世界座標系に固定された触覚呈示が実現される.さらに各素子は独立に駆動され,ケーブルによる通信を必要としないため配線の問題も解決する.

To present tactile pattern to the whole body surface, there are some issues to be solved, such as hindering body movement by wiring and necessity of calibration for each person. In this study, we solved the issues by using projection-based technology. Vibration unit is composed of a vibrator and a light sensor, so that the vibrators are driven by projection pattern, so that the tactile pattern is always accurate in the world coordinate. Wiring issue is also solved, because the units work independently and no wire-based communication is required.

-植松, 小川,岡崎,蜂須, 梶本: プロジェクションを用いた全身への触覚呈示ディスプレイ,エンタテインメントコンピューティング2014(2014年9月 明治大学 中野キャンパス)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2014_Projection-basedWholeBodyTactileDisplay.pdf&refer=uematsu,pdf);]


**ラケットにおける打撃位置知覚に関する研究 (Sensation of hitting position by racket)[#saaec71a]
&aname(Badminton);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=badminton_taira.jpg,right,around,nolink,250x161);

バドミントンをはじめとするラケットスポーツにおいて,ボールがラケットのどこに当たったかという情報は,競技力向上のため重要な手がかりである.そのため VR におけるラケットの打撃位置提示はスポーツゲーム等のリアリティを向上させる重要な要素であると考えられる.本稿ではバドミントンラケットに着目し,ラケットでボールを打った際の打撃位置知覚が触覚のみで可能か調査した.

-中村,渡辺,岡崎,蜂須,佐藤,梶本:ラケットにおける打撃位置知覚に関する研究,第19回日本バーチャルリアリティ学会大会 (2014年9月 名古屋大学), 2014.9.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR2014_taira_FNL.pdf&refer=taira,pdf);]

&br;&br;&br;&br;
&aname(UruuruNuigurumi);
**鏡面反射を利用した目がゆらぐぬいぐるみに関する研究 (Stuffed-toy with Wavering Eyes by Specular-reflection) [#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2014_nakai_urukuma_R.jpg,right,around,nolink,260x195);

ぬいぐるみに人とのインタラクション機能を付与する従来の提案の多くは,ぬいぐるみに音声や手足および眼球の動き,呼吸や心拍に伴う動き等を付与するものであったが,不完全に実現されたインタラクションはかえってぬいぐるみに対する没入感を損なう危険があった.今回我々はぬいぐるみに生き物感を付与する最小限の構成として,目の表面の涙のゆらぎを表現する手法を提案する.涙のゆらぎは鏡面反射によって拡大して知覚されるため,微小な動きで人に知覚させることが出来,また感情表現を行える可能性がある.今回は水中の気泡と振動子を用いるだけの簡易な手法で目のゆらぎを実装し,その効果を検証した.

While there are many proposals of enriching interaction between human and stuffed-toys by additional functions such as voice, movement of arms and legs or breath and heartbeat, they have the risk of damaging live interaction, by letting users finding the imperfectness of the interaction. This research aims to enchant stuffed-toys with minimal components, and we proposed a method to express tear wavering on eyes surfaces. Even if tear wavering is small, we can observe it by specular-reflection, and feel emotion from this movement. We developed the eyes wavering component by using bubbles in water and vibration motors, and evaluated the method.

-中井, 岡崎,蜂須, 佐藤, 梶本: 鏡面反射を利用した目がゆらぐぬいぐるみに関する研究,エンタテインメントコンピューティング2014(2014年9月 明治大学 中野キャンパス)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2014_nakai.pdf&refer=publications,pdf);][[[movie]:http://youtu.be/cm63hEyfzYU]]

-中井, 岡崎,蜂須, 佐藤, 梶本: 目の光のゆらぎがもたらすぬいぐるみの生き物らしさ,インタラクション2015(第19回一般社団法人情報処理学会シンポジウム)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=interaction2015_nakai_C11.pdf&refer=research,pdf);]

&aname(MusicShower);
**Jorro Beat: シャワーを用いた浴室での触覚刺激装置の提案(Shower Tactile Stimulation device in the Bathroom) [#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Shower2.png,right,around,nolink,320x180);

防水機器の普及により,浴室で視聴覚コンテンツを楽しむ機会は多くなっている.そこで我々は浴室での視聴覚コンテンツの臨場感向上を目的として,シャワーの水流を制御することによってユーザに触覚刺激を与えるシステムを提案した.本稿では音楽に合わせて変調された触覚を呈示可能であるシャワー触覚刺激装置を開発した.実験の結果水流の制御によって約50Hzまでの触覚提示が可能であることを確認した.

With the spread of water-proof devices, we occasionally enjoy audiovisual contents in the bathroom. We proposed and developed a system to provide tactile stimulus to enrich audiovisual experience in the bathroom by controlling the water flow of the shower. Experimental result showed that we can present up to 50 Hz vibration by modulating shower flow.
-星野,高下,梶本 : シャワーを用いた浴室での触覚刺激装置の提案,エンタテインメントコンピューティング2014(2014年9月 明治大学 中野キャンパス)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC_yoko.pdf&refer=hoshi,pdf);]
-星野,高下,小玉,蜂須,梶本: シャワーを用いた浴室での触覚刺激装置 (第2報) -振動知覚実験および静音化-,インタラクション2015(第19回一般社団法人情報処理学会シンポジウム)(2015年3月 日本科学未来館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=int2015_ver5_fin.pdf&refer=hoshi,,pdf);]
-K. Hoshino, M. Koge, T. Hachisu, R. Kodama, H. Kajimoto,“Jorro Beat: Shower Tactile Stimulation Device in the Bathroom,” In CHI 2015 Extended Abstracts on Human Factors in Computing Systems. ACM, 2015.4, Seoul, Korea.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=CHI2015_ver7.pdf&refer=hoshi,,pdf);]
-星野,高下,小玉,蜂須,梶本: シャワーを用いた浴室での触覚刺激装置 (第3報) -音楽体験への寄与の検証-,日本機械学会ロボティクス・メカトロニクス講演会2015(2015年5月 みやこめっせ)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomec2015_ver3.pdf&refer=hoshi,,pdf);]
-星野,高下,小玉,蜂須,梶本: Jorro Beat: シャワーを用いた全身触覚刺激装置による浴室内音楽体験の向上,エンタテインメントコンピューティング2015(2015年9月 札幌市教育文化会館・北海道大学学術交流会館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ec2015_ver3.pdf&refer=hoshi,,pdf);]
-星野,高下,蜂須,小玉,梶本:Jorro Beat:シャワーを用いた全身触覚刺激装置による浴室内における音楽体験の向上,ヒューマンインタフェース学会論文誌,Vol.18,No.2,2016. (in Japanese)
-[[movie(Youtube):https://www.youtube.com/watch?v=ydYLu0zeJ3U]]

&aname(ELECTROTACTILE_SOFTNESS);
**圧力分布に基づく電気刺激パターンの変調による弾性感の提示(Presentation of Softness Using Film-Type Electro-Tactile Display and Pressure Distribution Measurement) [#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takei_softness.jpg,right,around,nolink,200x200);

We have developed a system composed of an electro-tactile display and distributed pressure sensor underneath. The pressure sensor detects finger pressure distribution, and the electro-tactile display presents tactile sensation in accordance with the pressure distribution, so that local “force-feedback” is achieved at each electrode. In this paper, we utilized this system to express softness feeling. The tactile stimulation is presented just at the edge of the finger contact area so that it enhances expansion and shrinking of contact area when the users press and release their fingers. Experimental result revealed that proposed algorithm surely increases subjective softness.
-武井,渡辺,岡崎,蜂須,梶本 : 圧力分布に基づく電気刺激パターンの変調による弾性感の提示,日本機会学会ロボティクス・メカトロニクス講演会2014(2014年5月 富山国際会議場,富山市総合体育館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomec_takei_last.pdf&refer=takei,pdf);]
-S. Takei, R. Watanabe, R. Okazaki, T. Hachisu, H. Kajimoto: Presentation of Softness Using Film-Type Electro-Tactile Display and Pressure Distribution Measurement. Asia Haptics, November 18-20, 2014, Tsukuba, Japan.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AsiaHaptics_Takei.pdf&refer=takei,pdf);]&br;

&aname(MASTERHAND);
**電気触覚ディスプレイおよび圧力分布センサを用いた把持型マスタハンド(Grip-Type Master Hand Using Electro-Tactile Display and Pressure Distribution Sensor) [#saaec71a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=takei_masterhand.jpg,right,around,nolink,240x198);

我々はこれまで電気触覚ディスプレイと圧力分布センサを併用し,触覚提示と圧力分布計測を同時に行うことが可能なシステムを提案している.本研究ではこのシステムを用いた,実世界のロボットハンドまたはVR世界のアバタハンド操作を目的とした触覚フィードバックが可能な円筒形状の把持型マスタハンドについて述べる.圧力分布計測を用いて各指からの圧力を取得しロボットハンドの各指の姿勢に反映するとともに,電気触覚ディスプレイを用いてロボットハンドと物体との接触状態をユーザへフィードバックしている.
-武井,渡辺,岡崎,蜂須,佐藤,梶本 : 電気触覚ディスプレイおよび圧力分布センサを用いた把持型マスタハンドの開発,第19回日本バーチャルリアリティ学会大会 (2014年9月 名古屋大学)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj_takei.pdf&refer=takei,pdf);]
&br;&br;&br;

**多数の直動型振動子を用いた手全体への触覚提示が可能なグローブ (Haptic glove by using numerous vibrators on palm) [#u2264f04]
&aname(HapticGrove);
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Glove.jpg,right,around,nolink,320x179);
触覚フィードバックはVRコンテンツをより没入感の高いものにするため.我々は52個の直動型振動子を搭載した手掌部全体への低遅延フィードバックが可能な触覚グローブを開発した.また,このグローブを用いてバーチャル空間内のオブジェクトとの接触に応じてフィードバックを行う環境を構築し,その形状識別をする実験を行った.
その結果,触覚フィードバック範囲を手の平まで広げることで有意に形状認識精度や回答時間の向上が見られた.本グローブによる広範囲,高速な触覚フィードバックはVRの触覚表現に効果的であると考えられる.
~Haptic feedback is crucial for enriching the experience of virtual reality contents. While most haptic devices focused on the fingertip, or some required huge setups, we have developed a simple glove-type master hand that has two features. One is that it uses numerous actuators to cover the whole hand (52 vibrators). The other is that we employed linear resonant actuators to achieve high-speed response. We also developed VR environment that users can touch and feel VR object with the glove. In this paper, we conducted an experiment to verify the significance of the whole hand tactile stimulation and high-speed feedback for the identification of contact shape.~
-田辺健太、武井聖也、梶本裕之:  多数の直動型振動子を用いた手全体への触覚提示が可能なグローブの開発, 第15回 公益社団法人 計測自動制御学会 システムインテグレーション部門 講演会 SI2014 ,2014.9 東京ビッグサイト
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=tanabe_si_2014.pdf&refer=k-tanabe,pdf);]~
-田辺健太、武井聖也、梶本裕之:  多数の直動型振子を用いた手全体への触覚提示が可能なグローブの開発(第2報)-振動フィードバックによる物体の 3次元形状判別実験 -, 
日本機械学会ロボティクス・メカトロニクス講演会2015,2015.5,みやこめっせ.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomech_tanabe_final.pdf&refer=k-tanabe,pdf);]~
-Kenta Tanabe, Seiya Takei, Hiroyuki Kajimoto:  The Whole Hand Haptic Glove Using Numerous Linear Resonant Actuators, IEEE World Haptics Conference 2015, June 22-26, 2015, Northwestern University, Eanston, Illinois. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=TanabeWHC.pdf&refer=k-tanabe,pdf);]. Poster,Demo.~
-田辺健太、武井聖也、梶本裕之: 多数の直動型振動子を用いた手全体への触覚提示が可能なグローブの開発(第3 報)-強度提示と姿勢センサ改善による触覚フィードバックの高品位化-, エンタテインメントコンピューティング2015,2015.9,札幌市教育文化会館・北海道大学学術交流会館. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2015_tanabe.pdf&refer=k-tanabe,pdf);]. デモ~

&br;&br;


*2013- [#ob04a4a0]
&aname(ROLLER);
**Development and Evaluation of Vibration and Alternating Temperature Stimuli of a Roller-type Itch-relief Device [#c13155a5]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Itch_Relief.jpg,right,around,nolink,170x124);
Painful thermal stimulation is known to inhibit the itch sensation, which is a significant problem for many diseases. We focused on the thermal grill illusion, which is well-known phenomenon that can generate pain or a burning sensation without physical damage; we tried to achieve a similar effect via thermal stimulation at a harmless temperature. We have developed a roller-type itch-relief device. When the device is rolled on the user’s skin, the skin is alternately exposed to hot and cold stimuli. In addition, vibration is applied so that a virtual scratching feeling is presented without damaging the skin. This paper evaluates the device by eliciting an itch using a lactic acid solution and then applying the device. Results clearly show that the device is effective in terms of relieving the itch sensation, and the effect continued for 8 minutes. 

&aname(MUTUAL_REFERRAL);
**Mutual Referral of Thermal Sensation between Two Thermal-tactile Stimuli [#x7e8d04d]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Mutual_Referral.jpg,right,around,nolink,170x160);
When thermal stimulation is applied to one location on the skin and tactile stimulation is presented to another, we perceive the thermal sensation on the latter location as well. While this illusion, known as thermal referral, has been well studied, there is little knowledge on the mutual interaction among multiple thermaltactile stimuli. We conducted an experiment for verifying the mutual interaction of thermal referral between two thermal-tactile stimuli on forearm and found that there are strong asymmetry between the stimuli locations and between the thermal conditions. The elbow side perceives more thermal referral and synthetic heat (thermal grill illusion) than the wrist side. The warm sensation tends to spread from the periphery toward the center, whereas the cool sensation tends to spread from the center toward the periphery.

&aname(WristHanger);
**手首と体幹部におけるハンガー反射 (Hanger Reflex at Wrist and Waist) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=WristHanger_big.jpg,right,around,nolink,312x193);
針金製ハンガーを頭部に被ると不随意に頭部が回旋するハンガー反射は、コンパクトな装置で力覚を提示する一手法として有力であるが、これまで身体全体で同様の現象が生じるかどうかの検証はなされていなかった。我々は今回、ふとん用洗濯バサミで手首及び腰を挟むと同様に不随意に回旋することを見出した。これはハンガー反射に用いられている手法を体全体に拡張することで、効率的に不随意運動を誘発できる可能性を示唆している。本稿では手首及び体幹を圧迫するデバイス開発について報告する。ユーザーテストの結果大半の被験者が回旋方向への力を感じることを確認した。さらにギプスの圧迫によって生じる皮膚のせん断変形が現象発生に関与している可能性が示唆された。

When a head is equipped with a hanger made of wire sideways, and its temporal region is sandwiched by the hanger, the head rotates unexpectedly. This phenomenon is called “Hanger Reflex”. Although it is one of the simple methods for producing pseudo-force sensation, the position was limited to head. We discovered that a wrist or waist equipped with the bigger size device rotates the arm or the body involuntary. This fact suggests that the principle of Hanger Reflex can be applied to other parts of the body. In this paper, we report development of the device and user test, suggesting that most participants felt the rotational force. The results also suggest possible involvement of shear force to this phenomenon.
-中村,西村,佐藤,梶本:手首と体幹部におけるハンガー反射. 第18回一般社団法人情報処理学会シンポジウム インタラクション(2014年 2-3月 東京),2014. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E6%8B%93%E4%BA%BA_%E8%85%95%E5%9B%9E%E3%81%97_%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B32014%E4%BA%88%E7%A8%BF_Ver.3.5.pdf&refer=n.takuto,,pdf);]
-Takuto Nakamura, Narihiro Nishimura, Michi Sato, Hiroyuki Kajimoto: Application of Hanger Reflex to wrist and waist.~
IEEE VR 2014, March 31-April 2, 2014, Minneapolis, United States.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Takuto_IEEEVR_Proposal.pdf&refer=n.takuto,pdf);]~

&aname(GelTouchpanel);
**ゲルのせん断変形を用いたタッチパネルにおける水平方向力入力 (Tangential Force Input for Touch Panel Using Shear Deformation of Gel Layer) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ElasticTouchPanelmini.jpg,right,around,nolink,317x199);
現在多くのタッチパネルでは入力の検出に静電容量方式が用いられており,指の座標や接触面積の計測が可能である一方で,指の力の測定は接触面積による垂直方向のみ実現されている.そこで本研究ではゲル層を設ける簡易な手法で水平方向の力を測定し,タッチパネルへの水平方向の力入力を実現する.具体的にはゲルの水平方向のバネ定数と指の座標変化の情報から,水平方向の力を得る.本研究では提案手法により実現される水平方向の力入力を活用し,非電源かつ簡易な実装で画面全体のジョイスティック化や画面内のやわらかい物体のよりリアルな造形などへの応用を目的とする.

Many capacitive touch panels detect the user’s finger position and contact area, and it can estimate vertical force by the change of the contact area. However, they do not have the ability of detecting and measuring tangential force. This research aims to enable tangential force detection using gel layer. The tangential force is estimated from the gel spring ratio and user’s finger displacement. By this tangential force input method, the whole surface of the tablet becomes joystick, or we can model virtual soft objects in the display by deforming with our fingers.

-中井,工藤,岡崎,梶本,栗林:ゲルのせん断変形を用いたタッチパネルにおける水平方向力入力. 第18回一般社団法人情報処理学会シンポジウム インタラクション(2014年 2-3月 東京)
//[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=interaction2014_A2-1.pdf&refer=publications,,pdf);]
[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=interaction2014_A2-1.pdf&refer=publications]]
-中井,工藤,岡崎,梶本,栗林:ゲルのせん断変形を用いたタッチパネルにおける水平方向力入力(第2報)-既存の垂直抗力測定手法との比較-,第12回力触覚の提示と計算研究会(2014年 3月 東京)[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=rikishokkaku2013_12kai_nakai_yawarakatouchpanel.pdf&refer=publications]]
-Y. Nakai, S. Kudo, R. Okazaki, H. Kajimoto, H. Kuribayashi: Detection of Tangential Force for a Touch Panel Using Shear Deformation of the Gel , CHI 2014, April 26-May 1, 2014, Toronto, Canada. [[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SIGCHI2014_v15_fin_NAKAI.pdf&refer=publications]]
-Y. Nakai, S. Kudo, R. Okazaki, H. Kajimoto : Tangential Force Input for Touch Panels Using Bezel-Aligned Elastic Pillars and a Transparent Sheet, UIST 2014, October 5-8, 2014, Honolulu, USA.[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=uist2014_Nakai.pdf&refer=publications]]
-中井,工藤,岡崎,梶本: 弾性素材のせん断変形を用いたタッチパネルへの水平方向力入力:入力モードの判別,エンタテインメントコンピューティングシンポジウム(2015年 9月 北海道)[[[pdf]:https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2015nakai.pdf&refer=publications]]

&aname(WhiteCane);
**棒を把持した手掌部への振動提示による打撃時の触覚的距離推定錯誤 (Altering Perceived Distance from Hitting with a Stick by Overlapping Vibration to Holding Hand) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=WhiteCane.jpg,right,around,nolink,431x133);
白杖を日常使用する視覚障がい者にとって,白杖に衝突した対象(障害物)との距離を知ることは極めて重要である.しかし,把持した棒で物体を打撃するだけでなぜ接触物体との距離推定が可能なのかという触覚的な知覚メカニズムについては未だ明らかになっていない. 
皮膚感覚に着目すると,打撃の際に手掌部に加わる衝撃の重心位置は,打撃対象が近いほど親指側に,遠いほど小指側に寄ると考えられる.もしこの重心位置移動を距離知覚に用いているなら,打撃する際に生じる振動に振動子からの振動を重畳し,手掌部に伝わる振動の比率を変化させることで物体の接触位置を錯誤させることができると考えられる.2つの振動子を親指側,小指側に装着した棒デバイスを開発し,打撃によって生じる振動にリアルタイムに重畳する形で振動提示を行うシステムを構築,実験した結果,確かに親指側の振動を強調した場合に比べ,小指側の振動を強調した場合のほうが打撃位置をより「遠く」に感じられることが判明した.

Most of us have an experience of perceiving distance by hitting objects with a stick. This perception is quite important in some situations, especially for the visually impaired who use white canes in daily life. Understanding the perception mechanism underlying this phenomenon might help developing supporting devices, such as an electric white cane that consists of a range sensor and a haptic display.
We focused on the perceived distance from hitting an object using a handheld stick. A hypothetical mechanical model of a stick and a holding palm told us that hitting at a closer point should induce a stronger vibration at thumb side of the palm, and percussing a farther point should induce equally distributed vibrations in the palm.
-R. Okazaki and H. Kajimoto: Perceived Distance from Hitting with a Stick Is Altered by Overlapping Vibration to Holding Hand, CHI 2014, April 26-May 1, 2014, Toronto, Canada. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=okazakichi2014.pdf&refer=publications,pdf);]
-R. Okazaki, and H. Kajimoto: Altering Distance Perception from Hitting with a Stick by Superimposing Vibration to Holding Hand. Euro Haptics Conference2014, June 24-26, 2014, Versailles, France.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EH2014WCaneokazakiVer11.pdf&refer=publications,pdf);]
-岡崎,梶本:把持棒による物体打撃時の振動重心変化に伴う触覚的位置推定錯誤,日本機械学会ロボティクス・メカトロニクス講演会2014(2014年5月 富山市総合体育館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomec2014okazakiver7-7.pdf&refer=publications,pdf);]
-R. Okazaki, and H. Kajimoto: Perceived Distance from Hitting with a Stick Is Altered by Superimposing Vibration to Palm. ICAT2013: The 23rd International Conference on Artificial Reality and Telexistence, December 11-13, 2013, Odaiba, Tokyo. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ICAT2013okazakiVer4.pdf&refer=publications,,pdf);]
-岡崎,梶本:杖を把持した手掌部への振動重畳による打撃対象の距離錯誤. 第14回計測自動制御学会システムインテグレーション部門講演会(2013年12月 神戸),2013 [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICE-SI2013okazakiVer14.pdf&refer=publications,,pdf);]

&aname(WaterE);
**水中での電気刺激による触覚提示 (Tactile Presentation using Underwater Electrical Stimulation ) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=macpro_taira.jpg,right,around,nolink,151x235);
電気刺激を用いて触覚や力覚を提示する技術は数多く開発されているが,電気刺激は汗などの皮膚状態や電極との接
触状態の影響を受けやすく,安定した感覚提示が難しい.そこで我々は,水中で電気刺激による触覚提示を行うこと
を提案する.水中では電極を皮膚に接触させる必要がなく,また皮膚表面の汗が水で希釈されて状態の変化が少ない
ため,安定した感覚提示を実現できると考えられる.本稿では水中での電極の配置や電流経路が触覚にもたらす影響
を検証する. 

Electrical stimulation is been used for tactile and force presentation. However, there is a common issue of difficulty 
to present stabilized sensation, which is due to the fact that electrical stimulation is easily effected by skin condition and contact 
condition  with  electrodes.  In  this  paper,  we  propose  a  method  to  stabilize  tactile  presentation  using  electrical  stimulation 
underwater. 

-中村,加藤,岡崎,梶本:水中での電気刺激による触覚提示.エンタテインメントコンピューティング2013(2013年10月 サンポートホール高松・かがわ国際会議場)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2013_taira.pdf&refer=publications,,pdf);]

&aname(pikupiku);
**ピクピク運動計測による筋電気刺激の最適な電極配置の選択手法の検討 (Automatic Selection of Optimal Electrodes for Muscle Electrical Stimulation Using Twitching Motion Measurement) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pikupiku.jpg,right,around,nolink,235x180);
筋電気刺激はリハビリや筋肉トレーニング,力覚呈示などの様々な場面において利用される一方で,理想の運動を実現するために最適な位置に電極を配置することが困難であるという問題を抱える.身体姿勢が変化すると,皮膚上の電極と刺激したい筋肉の相対位置が変化してしまうため,姿勢を変えるたびに電極配置のキャリブレーションが必要となる.本稿ではこのキャリブレーションの手間軽減を目的とし,筋電気刺激による手指のピクピク運動を計測することによって複数の電極から最適な電極ペアを自動的に選択する手法を提案する.

Muscle electrical stimulation envisions a wide range of human augmentation application. However, the applications commonly have the issue of optimal electrode placement. The electrode moves according to the body position; thereby, the calibration of the optimal electrode placement is needed every time the body moves.  In this paper, we propose a method to select an optimal electrode pair for finger flexion using twitching motion measurement. We delivered electrical stimulation producing twitching motion via four electrode pairs and measured the acceleration. Using the acceleration value, we selected the optimal electrode pair that twitched the finger the most. Preliminary experiment with four electrodes showed feasibility of our method.

-加藤,西村,横山,蜂須,佐藤,福嶋,梶本:ピクピク運動計測による筋電気刺激の最適な電極配置の選択手法の検討,日本機械学会ロボティクス・メカトロニクス講演会2013 (2013年5月 つくば国際会議場),2013.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ROBOMEC2013_paper_submit_ver2.pdf&refer=publications,pdf);]&br;
-M. Katoh, N. Nishimura, M. Yokoyama, T. Hachisu, M. Sato, S. Fukushima, H. Kajimoto: Optimal Selection of Electrodes for Muscle Electrical Stimulation Using Twitching Motion Measurement, 
&br;Augmented Human 2013, Stuttgart, Germany, March 7-8 2013. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AH2013_CameraReady_submit.pdf&refer=people%2Fkatoh,,pdf);]&br;

&aname(sub);
**遭遇型指装着触覚ディスプレイによる摩擦感提示(Presentation of Friction by Encounter Type Wearable Tactile Display)[#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=DEVICE.jpg,right,around,nolink,250x166);
指先への表面滑り、つまり摩擦感の呈示は触覚インタラクションにおいて物体をなぞった際の感覚を再現する上で重要である。これまでに提案されてきたデバイスは、摩擦感の要素のうち低周波成分であるせん断方向への皮膚変形、あるいは高周波成分である振動のどちらかを呈示することに特化していた。そこで本研究では垂直及び水平方向に駆動するアクチュエータを用いて、摩擦感の要素を幅広い帯域で実現することが可能な触覚呈示デバイスを提案する。デバイスは小型のDCモータとボイスコイルモータ(VCM)から構成される。低周波成分はDCモータに取り付けられたベルトの並進運動によって、高周波成分はVCMからの垂直方向の振動によって実現される。これにより、物体をなぞった際の摩擦感が高品位に呈示され、VR空間での手作業のように指の3次元運動が必要な状況において作業性の向上に貢献すると考えられる。

In haptic interaction, friction caused by slip on the fingertip is a key factor for manual manipulation as well as exploration of 
texture and shape. From the moment of contact, the friction contains vertical and tangential skin deformations and vibrations, not all of which have been 
simultaneously supported by previous portable/wearable haptic devices. We propose a portable haptic device that has the ability to present skin deformation 
and vibration with two degrees of freedom by using two types of motors: a voice coil motor (VCM) for vertical motion and vibration, and direct current motors for tangential skin stretch. The VCM also achieves encounter-type haptic interactions. 
A combination of these motions encompasses most cutaneous cues for realistic friction.

-N. Nishimura, D. Leonardis, H. Kajimoto, M. Solazzi, A. Frisoli: Dual Actuated Tactile Device for Displaying Force Contact and Static Friction
by Skin Deformation,&br;
IEEE World Haptics Conference, April 14-17, 2013, Daejeon, Korea【展示発表】&br;
-西村,Leonardis,Solazzi,Frisoli,梶本:遭遇型指装着触覚ディスプレイによる摩擦感呈示,&br;
日本機械学会ロボティクス・メカトロニクス講演会2013(2013年5月 つくば国際会議場),2013[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=1A2-E08.pdf&refer=people%2Fnishimura,,pdf);] 【ポスタ+展示発表】
-西村,Leonardis,Solazzi,Frisoli,梶本:高品位な摩擦感呈示のためのウェアラブルな遭遇型触覚呈示デバイス,&br;
第18回日本バーチャルリアリティ学会大会(2013年9月 大阪),2013[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2013_nishimura_ver5.0.pdf&refer=people%2Fnishimura,,pdf);]【口頭発表】

&aname(audiotactile);
**触覚刺激を用いた聴覚変調 (Auditory Modulation by Using Tactile Stimulation) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=audiotactile.jpg,right,around,nolink,254x180);
従来聴覚的に高品位なコンテンツ鑑賞を支えていたのが多チャンネル・高性能スピーカに代表される高臨場体感音響技術である.これらの技術では重低音の補強・多スピーカによる音場の再現・身体広範囲への振動提示等によって臨場感を高めている.しかしながら,モバイル端末は大きさの制約上大型の装置や高性能なスピーカを搭載することが難しく,たとえ実装したとしても生活雑音にあふれたモバイル環境下ではその性能を発揮することは難しい.本研究ではモバイル環境における聴覚の臨場感を増幅することを目的とし,聴覚刺激の一部を触覚刺激で補強,代替し,「触覚を聴く」ことを提案する.本提案では触覚と聴覚のクロスモーダル現象に着目し,「聴覚知覚が触覚によってうける変化」を利用する.モバイル端末は聴覚刺激の品質が制限されるが,常に端末を把持しているため触覚刺激にとっては大変都合の良い状況であることを利用し,貧しい聴覚刺激が触覚刺激によってあたかも豊かになったかのように感じさせることを目標とする.

Few cases have been reported that tactile stimulation affects auditory perception. 
With the aim of augmenting auditory sensation by tactile stimuli, we investigated cross-modal relationships between the two modalities, focusing on loudness and frequency. The results showed that auditory loudness perception could be enhanced by adding tactile stimulation. Also in the frequency region, consonance between tactile and audio may depend on their overtone relationships, which are similar to that of auditory, but they have unsharp peaks. In the future these techniques could be used for mobile devices such as smart phones, tablet computers, or portable game devices whose loudspeakers are limited in size and weight.

-岡崎,蜂須,佐藤,福嶋,Hayward,梶本:触覚-聴覚間における周波数的協和性,日本機械学会ロボティクス・メカトロニクス講演会2013(2013年5月 つくば国際会議場).[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=2A2-A14.pdf&refer=publications,pdf);]
-R. Okazaki, T. Hachisu, M. Sato, S. Fukushima, V. Hayward, and H. Kajimoto: Judged Consonance of Tactile and Auditory Frequencies. IEEE World Haptics Conference, April 14-17, 2013, Daejeon, Korea.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=WHC2012okazaki-ver19.pdf&refer=publications,pdf);]
-岡崎,蜂須,佐藤,福嶋,Hayward,梶本:触覚刺激による聴覚強度知覚への影響,第13回計測自動制御学会システムインテグレーション部門講演会,福岡国際会議場[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SICE-SI2012okazaki-ver7-2.pdf&refer=publications,,pdf);]&br;
-Ryuta Okazaki, Hiroyuki Kajimoto & Vincent Hayward: Vibrotactile Stimulation Can Affect Auditory Loudness: A Pilot Study, EuroHaptics Conference2012, Tampare, Finland [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=RO-HK-VH-12.pdf&refer=publications,,pdf);]

&aname(HACHIStack);
**HACHIStack: Dual-Layer Photo Touch Sensing for Haptic and Auditory Tapping Interaction [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HACHIStack.jpg,right,around,nolink,320x180);

We present a novel photo touch sensing architecture, HACHIStack. It can measure the approaching velocity of an object and predict its contact time with the touch screen using two optical sensing layers above the surface. Our photo sensing layers have three unique capabilities: highspeed sampling, velocity acquisition, and contact time prediction. This work quantitatively examines these capabilities through two laboratory experiments, and confirms that the capabilities of HACHIStack are sufficient for multimodal interaction, in particular, touch-based interaction with haptic enhancement. We then present three applications with HACHIStack: 1) chromatic percussions (xylophone and glockenspiel) with haptic feedback; 2) nodelay haptic feedback with the sensation of tapping on various simulated materials (e.g., rubber, wood and aluminum); and 3) a virtual piano instrument that allows players to perform weak and strong strokes by changing the tapping velocity.

&aname(KinectScoring);
**Kinectを用いた痙性斜頸の自動姿勢評価システムの開発 (Semi-automatic Scoring Method for Torticollis by Using Kinect) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=application2.jpg,right,around,nolink,293x237);

運動障害疾患の一つとして知られる痙性斜頸の症状評価には、現在Tsui ScoreやTWSTRSなどいくつか評価方法があるが、それらの姿勢評価は手動により行われている。しかし、評価者によって基準が異なるために評価者が同一でないデータ同士を比較することは不可能である。痙性斜頸のように、確たる治療法がなく今後も新しい治療法開発が必要とされる疾患においてはより再現性の高い、比較可能な症状評価手法の確立が待たれ
る。そこで本研究ではリアルタイムに3次元計測が可能なKinectを用いて、斜頸疾患に対し正確で再現性のある姿勢評価を実現することを目的とする。本稿で製作したシステムは患者の顔認識、顔の角度の計測、表示を自動で行い、毎秒10回のサンプリングが可能である。本システムのソフトウェアは現在無償で配布しており、世界中で安価に購入可能なKinectと合わせ、どこでも同じ評価環境を作ることが可能となっている。

Although conventional methods such as Tsui Scale or TWSTRS are available to score torticollis severity, the results obtained are sometimes inaccurate because these tests are performed manually. The objective of our research is to increase the accuracy and reproducibility of the scoring results for torticollis. The lack of accurate and reproducible results hinders the development of new treatments for torticollis. To capture patients’ facial orientations in real time, we used Kinect (Microsoft Xbox full-body game controller), a device that can simultaneously capture 2D color images and depth images, and tracked patients’ faces. The patient sits 0.5m-1.0m away from Kinect, and the system we developed automatically detects 3D facial orientations. The system can obtain and show patients’ facial direction for each axis as rotation, lateral, and tilt of Tsui Scale in real time.
-T. Nakamura, M. Sato, T. Asahi, G. Oyama, H. Kajimoto:Semi-automatic Scoring Method for Torticollis by Using Kinect,17th International Congress of Parkinson's Disease and Movement Disorders, June 16-20, 2013, Sydney, Australia.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Takuto_MDS_Poster_Ver8.2.pdf&refer=research,pdf);]
-中村,西村,旭,大山,服部,佐藤,梶本:Kinectを用いた痙性斜頸患者の姿勢評価システムの開発,第18回日本バーチャルリアリティ学会大会(2013年9月 大阪),2013[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=takuto_VR%40osaka_VerFinal.pdf&refer=publications,pdf);]
-中村,西村,旭,大山,佐藤,梶本:痙性斜頸患者に対する Kinect を用いた姿勢評価システム. 第18回一般社団法人情報処理学会シンポジウム インタラクション(2014年 2-3月 東京),2014. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E6%8B%93%E4%BA%BA%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B32014%E4%BA%88%E7%A8%BF_Final2.pdf&refer=n.takuto,,pdf);]
-Takuto Nakamura, Narihiro Nishimura, Michi Sato, Takashi Asahi, Genko Oyama, Hiroyuki Kajimoto: Kinect-based Automatic Scoring System for Spasmodic Torticollis.~
IEEE 3DUI 2014, March 29-30, 2014, Minneapolis, United States. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Takuto_3DUIposter_FinalVer4.pdf&refer=n.takuto,pdf);]~

&aname(randomdot);
**ランダムドットステレオグラムにおける注視点提示による立体視支援手法 (Stereoscopic Support by Displaying Depth Cue in Random Dot Stereogram) [#db652789] 
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=randomdot.jpg,right,around,nolink,235x180);

ランダム・ドット・ステレオグラム  (Random  Dot  Stereogram,  RDS)  は,一見ノイズのようだが一定の視差をもって見ると立体が浮かび上がる画像である.RDS を見るためには随意的に輻輳開散運動を調整する必要があるが,この調整能力には大きな個人差が存在し立体視が不可能な人も数多く存在する.我々は両眼の眼球運動を計測することで誰でも RDS を見ることが出来るシステムを提案する.これにより RDS は一種の情報隠蔽の手段として利用可能となると考えられる.本稿では予備的な検討として,輻輳性眼球運動が正しく生じている場合に RDS 立体視が確実に生じることを確認した.鏡像を用いてディスプレイ面奥に注視点を設けた場合に立体視成立の所要時間が減少することを確認した.
-工藤,岡崎,蜂須,佐藤,梶本:ランダムドットステレオグラムにおける注視点提示による立体視支援手法,第18回日本バーチャルリアリティ学会大会論文集(2013年09月),2013.
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrsj2013_kudo2.pdf&refer=people%2Fkudo,,pdf);]&br;


&aname(jointonation);
**Jointonation: ロボット振動の記録・モデリング・再生による人体のバーチャルなロボット化(Jointonation: Virtual Robotization of the Human Body Using Vibration Recording, Modeling, and Rendering) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=jointonation.jpg,right,around,nolink,235x180);
サイエンスフィクションの世界では,身体が金属で構成されているロボットが数多く登場する.その身体的特性は興味深く,多くの視聴者が一度はその身体になってみたいと思うだろう.そこで我々は,ロボットの身体感覚を人間に再現し,ユーザ自身の身体があたかもロボットになったかのように感じさせる手法を提案する.実際のロボットに生じる振動加速度を記録・モデリング・再生し,これにロボットアームのアニメーションと駆動音を組み合わせることでロボットらしい身体感覚の再現を試みる.本研究は身体運動入力型ゲームにおける没入感向上に貢献できると考えられる.

Worlds of science fiction frequently involve robotic heroes composed of metallic parts. Although these characters exist only in the realm of fantasy, many of us would be interested in becoming them, or becoming like them. Therefore, we developed a virtual robotization system that provides a robot-like feeling to the human body not only by using a visual display and sound effects, but also by rendering a robot’s haptic vibration to the user’s arm. The vibrotactile stimulus was recorded using real robot actuation and modeled using linear predictive coding (LPC). We experimentally confirmed that the subjective robot-like feeling was significantly increased by combining the robot-vibration feedback with a robot-joint animation and creaking sound effects.

-栗原洋輔,蜂須拓,Katherine J. Kuchenbecker,梶本裕之:ロボット振動の記録・モデリング・再生による人体のバーチャルなロボット化.第18回日本バーチャルリアリティ学会大会(2013年9月 グランフロント大阪).[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2013kurihara.pdf&refer=people%2Fkurihara,pdf);]~
&color(red){''Young Researchers Award!''};
-Y. Kurihara, T. Hachisu, K. J. Kuchenbecker, H. Kajimoto: Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback.~
10th International Conference on Advances in Computer Entertainment Technology (ACE2013),November 12-15, 2013, Enschede, the Netherlands. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ACE2013kurihara.pdf&refer=people%2Fkurihara,pdf);]~
&color(red){''Best Paper Silver!''};
-Y. Kurihara, T. Hachisu, K. J. Kuchenbecker, H. Kajimoto: Jointonation: Robotization of the Human Body by Vibrotactile Feedback.~
ACM SIGGRAPH Asia 2013 Emerging Technologies, November 19-22, 2013, Hong Kong. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SIGGRAPH_Asia2013kurihara.pdf&refer=people%2Fkurihara,pdf);]
[ [[YouTube:http://www.youtube.com/watch?v=CWOPp1vCs2c]]]~
&color(red){''Best Demo Award! (voted by Program Committee)''};
-Y. Kurihara, S. Takei, Y. Nakai, T. Hachisu, K. J. Kuchenbecker, H. Kajimoto:~
Haptic Robotization of the Human Body by Data-Driven Vibrotactile Feedback .~
Elsevier Journal on Entertainment Computing, Volume 5, Issue 4, Pages 485-494, December 2014. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SpACE2013Pa_v20_final_onKajilabWeb.pdf&refer=people%2Fkurihara,pdf);] [ [[ScienceDirect:http://www.sciencedirect.com/science/article/pii/S1875952114000317]]]~
Original Paper.~

&aname(ParticleJamming);
**発泡ビーズの振動伝搬による広範囲触覚ディスプレイ(Large-Area Tactile Display Using Vibration Transmission of Jammed Particles) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ParticleJamming.jpg,right,around,nolink,235x180);

身体広範囲への触覚ディスプレイは,これまで主に振動子付きジャケットやイス等を用いた手法が提案されてきた.しかし身体表面に振動子をくまなく接触させることが難しく,また大量の振動子が必要であった.そこで本研究では,発泡スチロール製ビーズを用いたどんな身体形状にも適合する触覚ディスプレイを提案する.内部を真空状態にして硬化させたビーズで振動を伝搬させることにより,少ない振動子で身体表面広範囲への触振動呈示を試みる.~

Large area tactile displays often employ vibration feedback from chair or jacket. However, contact between vibrotactile transducers and the user’s body surface is sometimes insufficient, and the system requires a lot of transducers to apply to the whole body. In this study, we propose a novel vibrotactile display that fits to various shapes and covers large area of body surface, by means of vibration transmission through jammed particles. Styrofoam particles around the body are jammed by evacuating the air. Vibrations from speakers are delivered to user’s body though the jammed particles. We envision that our vibrotactile transmission technique can be applied for the whole body tactile display.~
-栗原,高下,岡崎,梶本:発泡ビーズの振動伝搬を用いた広範囲触覚ディスプレイ.エンタテインメントコンピューティング2013(2013年10月 サンポートホール高松・かがわ国際会議場)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2013kurihara.pdf&refer=people%2Fkurihara,pdf);]



&aname(Saferearcleaning);
**聴覚フィードバックを付与した耳掃除の提案(Safer Ear Cleaning by Adding Auditory Feedback) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC2013_koge.jpg,right,around,nolink,243x180);

他人の耳穴を掃除する行為は,掃除目的のみならず親密なコミュニケーションを目的として広く行われている.しかし視覚・聴覚的手がかりが乏しく,主に耳かき具から伝わる触覚を頼りに行わなければならない.そのため耳穴内での耳かき具の動きを把握し難く,耳穴を傷つける危険がある.一方で視覚手がかりを与える内視鏡は耳掃除にはコストが高い.そこで我々は,耳かき具で皮膚を擦る音を耳掃除者にフィードバックすることを提案する.これにより耳掃除の安全性および作業効率を向上させることを試みる.~

Ear cleaning is familiar for Asian people not only for medical care but also for relaxation and communication. However, cleaning the other person’s ear has a risk of injure because it is difficult to grasp movement and position of the earpick. Since the visual and auditory cues are limited, users must rely only on somatosensory cues. On the other hand, endoscope to see inside the ear is expensive. In this study, we propose auditory feedback of earpick interaction to provide additional cue. Our developed device is composed of microphone and earphone to catch and replay the sound associated with ear cleaning in real-time. We envision that this technique would improve safety and efficiency of ear cleaning. ~

-髙下,栗原,岡崎,蜂須,梶本:聴覚フィードバックを付与した耳掃除の提案.エンタテインメントコンピューティング2013(2013年10月 サンポートホール高松・かがわ国際会議場)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2013_koge.PDF&refer=publications,pdf);]
-高下昌裕,栗原洋輔,岡崎龍太,蜂須拓,梶本裕之 :聴覚フィードバックを付与した耳掃除の検討.日本機械学会ロボティクス・メカトロニクス講演会,2014.5. 富山市総合体育館.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomech2014_koge_01.pdf&refer=publications,pdf);]

&aname(VocabularyLeaning);
**単語記憶を補助する触覚提示デバイス(Tactile Cue Presentation for Vocabulary Learning with Keyboard) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=EC_Ogawa.gif,right,around,nolink,243x180);

言語学習において,単語の記憶は多くの時間を占めており,言語学習に膨大な時間がかかる要因の一つとなっている.
単語を記憶する際,何らかの関連付けによって忘れにくく,また想起の時間も短縮できることは広く知られており,
数多くの記憶法が提案されている.本研究ではこうした記憶法の一つに「書いて覚える」という触運動との関連付け
があることに着目し,触覚的な手がかりを与えることで単語の記憶を補助する手法を提案する.~

Vocabulary learning is considered one of the most time-consuming parts of language learning. Considering the fact that we generally memorize words by associating them with other cues, and one such cue is tactile sensation, we propose to use tactile 
vibration cues for vocabulary learning. we developed a device that is composed of accelerometers and vibrators 
attached to all fingers except thumb, and that can record and replay vibration resulting from keyboard typing. ~

-小川,池野,岡崎,梶本:単語記憶を補助する触覚提示デバイスの提案.エンタテインメントコンピューティング2013(2013年10月 サンポートホール高松・かがわ国際会議場)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=32_ogawa_EC2013.pdf&refer=publications,pdf);]
-小川,池野,岡崎,梶本:単語記憶を効率化する触覚提示装置の開発.
日本機械学会ロボティクス・メカトロニクス講演会2014(2014年5月 富山市総合体育館)[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=robomech2014_ogawa.pdf&refer=publications,pdf);]
-D. Ogawa, S. Ikeno, R. Okazaki, T.Hachisu, H. Kajimoto : Tactile Cue Presentation for Vocabulary Learning with Keyboard, UIST 2014, October 5-8, 2014, Honolulu, USA.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=UIST2014_Ogawa.pdf&refer=publications,pdf);]&br;


&aname(El_Press);
**フィルム状電気触覚ディスプレイにおける圧力分布計測を用いたフィードバック(Feedback in Film-Type Electro-Tactile Display Using Pressure Distribution Measurement) [#db652789]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Electrode_Pressure.jpg,right,around,nolink,200x255);

電気触覚ディスプレイは曲面形状の提示面を容易に構成できる一方で,手掌と提示面との接触状態が感覚に影響を与える問題がある.そこで我々はフィルム状電極とフィルム状力分布センサを併用し,触覚呈示と同時に圧力分布計測を行うことで感覚を安定的に提示する手法提案し,その性能を評価した.~

Electro-tactile display can be thin and flexible, making it easier to shape large and curved display that covers the whole palm. However, the sensation is affected by the contact condition, which may result in uncomfortable sensation. We propose a method to stabilize the sensation by the feedback using pressure distribution measurement. We constructed the system using film-type tactile display and film-type pressure distribution sensor, and evaluated the feedback method.~

-武井,渡辺,岡崎,梶本:フィルム状電気触覚ディスプレイにおける圧力分布計測を用いたフィードバック.第14回計測自動制御学会システムインテグレーション部門講演会(2013年12月 神戸),2013.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SI2013_Takei.pdf&refer=takei,pdf);]

*2012- [#i670a2f3]
&aname(RubberWoodAlumi);
**Reality-Basedな周期的衝撃感呈示による身体材質感の変調(Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=RubberWoodAlumi.jpg,right,around,nolink,320x160);

映画・漫画・アニメなどでは,ロボットやゴム人間など身体が普通の人間とは異なる材質で構成されているキャラクターが登場する.その身体的特性は極めて興味深く,視聴者の多くが一度はそのキャラクターになってみたいと思うだろう.
そこで本研究では,物体衝突時に生じる振動特性を再現する触振動フィードバックを用いて人間の身体材質感を変調することを試みる.材質ごとに波形が変化する本振動フィードバックをユーザの肘角度に同期させて肘関節に適用することで,ゴム・木材・アルミニウムの3つの材質感を呈示する.本手法によりユーザ自身の身体が金属やゴムになった感覚を再現できれば,例えば特殊な身体を持つスーパーヒーローになりきるゲームなど新たなエンタテインメントシステムへの応用が期待できる.

Characters with body materials that are different from that of humans, such as metal robots or rubber people, frequently appear in movies and comics. While the abilities of their synthetic bodies can be easily observed from their actions, their somatic sensations are more difficult to appreciate. Our aim in this work is to simulate the alteration of the material of the human body by means of reality-based vibrotactile feedback. The feedback represents the properties of the materials and is periodically applied to the elbow joint in synchrony with the elbow angle. This simulated sensation of having a different body material gives us the feeling of those characters. This technique can also be applied to improve maneuverability in the teleoperation of master-slave systems because it gives the operator a robot-like sensation.

-Y. Kurihara, T. Hachisu, M. Sato, S. Fukushima, H. Kajimoto: Virtual Alteration of Body Material by Periodic Vibrotactile Feedback,&br;
IEEE Virtual Reality Conference, March 16-23, 2013, Orlando, FL, USA. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=IEEEVR2013Kurihara.pdf&refer=people%2Fkurihara,pdf);]&br;
-栗原,蜂須,佐藤,福嶋,Kuchenbecker,梶本:Reality-Based な周期的衝撃感呈示による身体材質感の変調.日本機械学会ロボティクス・メカトロニクス講演会2013(2013年5月 つくば国際会議場).[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=Robomec2013kurihara.pdf&refer=people%2Fkurihara,pdf);]

&aname(tendon);
**腱電気刺激を用いたハプティックインタフェース(Haptic Interface Using Tendon Electrical Stimulation)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tendon.jpg,right,around,nolink,240x240);

力、運動ないし姿勢に関する感覚を提示するハプティックインタフェースは、テレイグジスタンスにおける現実感の呈示やテレオペレーションにおける操作性の向上などに寄与すると考えられ、これまで数多く提案されてきた。しかし人に自己受容感覚を提示するためには多くの場合大掛かりな機械的装置を必要とした。本研究ではこの問題を解決するために、腱への電気刺激によって生じる運動錯覚の利用を提案する。腱への振動刺激によって生じる運動錯覚は広く知られているが、電気刺激による同種の報告は極めて少なく、また本現象は腱器官ではなく筋紡錘由来であるとされてきた。これに対して我々は、腱への電気刺激が運動錯覚を引き起こしうることを確認した。これは運動錯覚の一因として腱受容器の寄与が考えられることを示唆する結果である。

Haptic interface that present kinesthetic sensation is indispensable for telexistence and virtual reality, in the sense that it provides reality and intuitiveness. Most haptic interface for kinesthetic sensation requires user’s motion, which is sometimes undesirable, due to limited workspace, user’s physical capability and fatigue. Therefore, presentation of kinesthetic sense without real motion is required. Kinesthetic illusion is a well-known phenomenon caused by vibratory stimulation to tendon. However, it requires strong mechanical vibration, which hinders its practical use. I propose to use electrical stimulation to tendon to generate the illusion. The experimental result revealed that the kinesthetic illusion can be generated by tendon electrical stimulation, suggesting possible contribution of Golgi tendon organ to the illusion.


&aname(accel);
**アクセルペダルへのクリック感付与による操作性向上(Click-like Tactile Feedback for Accelerator Pedal Control)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=clickingaccel.gif,right,around,nolink,320x140);

自動車の運転において、アクセルの調節は非常に重要である。自動車の加速度は主にアクセルペダルの踏み込み量によって決定するが、踏み込み量の把握が難しく、運転精度を下げる原因の一つとなっている.そこで本研究では、アクセルペダルに対しその踏み込み量に伴い触覚手がかりを離散的に呈示することで、ドライバーの踏み込み量知覚能力を向上させることを試みる。ドライブシュミレータを用いた実験の結果から、触覚的手がかりの付与によってアクセル調節がしやすくなり、ドライバーはより安全に運転するようになることが確認された.

Sensing the position and movement of the accelerator pedal in a vehicle is important for acceleration control and safety while driving. The accelerator pedal is controlled by the foot, but precise adjustment requires much training because the driver must rely on somatosensory cues, which provide limited feedback. In this study, we propose periodic tactile feedback for the accelerator pedal to provide an additional tactile cue. We conducted an experiment using a driving simulator to compare the lap time, the rate of off-track incidents and the subjective evaluation of controllability recorded in questionnaires. The experiment confirmed that the feedback makes the control of acceleration easier and facilitates safer driving.

-栗原,蜂須,佐藤,福嶋,梶本:アクセルペダルへのクリック感付与による操作性向上.第17回日本バーチャルリアリティ学会大会,2012年9月.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ2012kurihara.pdf&refer=publications,pdf);]
-Y. Kurihara, T. Hachisu, M. Sato, S. Fukushima, H. Kajimoto: Periodic Tactile Feedback for Accelerator Pedal Control. IEEE World Haptics Conference, April 14-17, 2013, Daejeon, Korea.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=WHC2013kurihara.pdf&refer=people%2Fkurihara,pdf);]&br;

&aname(cushion);
**心戯一体:疑似心拍提示を用いた視聴覚コンテンツ体験の拡張(Symphonic Heart:Augmentation of Audiovisual Experiences with a Pseudo Heartbeat)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=cushion.jpg,right,around,nolink,245x138);
人は好みの異性を目にした際,様々な生理反応を表出する.その中でも心拍の変動は最も直観的に理解しやすい現象であるといえる.我々はこの知見を用いて外部から心拍を模倣した振動を提示することによって,ユーザが視聴覚コンテンツ鑑賞時に作品に登場する人物に対する好意を増幅させることができるようなデバイスを提案する.実験では被験者に対してグラビア写真を見せ,振動の条件によって写真に対する評価が変化することを確認した.

A Symphonic Heart is a novel tactile device that is used to augment the appreciation of audiovisual media. When a human is attracted to someone, physiological responses, such as heartbeat changes, occur. We have found that presenting a pseudo heartbeat with a tactile modality and increasing its frequency can facilitate affective feelings towards photos. In this paper, we addressed 2 questions. The first was whether the heartbeat can be embedded in a common item that does not hinder content viewing. The other was whether frequency modulation is essential, or if a presenting random heartbeat is as effective. We fabricated a cushion with an embedded vibrator. Our experiments revealed that pseudo heartbeats enhanced positive feelings towards photos compared to conditions with no heartbeat, and an increased heartbeat frequency did not significantly affect the results. These findings suggested that presenting a heartbeat with a cushion is promising, and frequency modulation is not necessary.

-西村,蜂須,佐藤,福嶋,梶本:心戯一体:疑似心拍提示を用いた視聴覚コンテンツ体験の拡張,エンタテインメントコンピューティング2012(2012年9月 神戸大学),2012[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=2ECproceeding_nishimura.pdf&refer=people%2Fnishimura,,pdf);]【口頭発表(short)+展示発表】&br;
-N. Nishimura, T. Hachisu, M. Sato, S. Fukushima, H. Kajimoto: Evaluation of a Tactile Device for Augmentation of Audiovisual Experiences with 
a Pseudo Heartbeat,&br;
4th Augmented Human International Conference 2013, March7-8, 2013, Stuttgart, Germany[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ah2013_nishimura.pdf&refer=people%2Fnishimura,,pdf);] 【ポスタ&展示発表】&br;

&aname(VisuoTactileCrossModal);
**視触覚クロスモーダル現象に基づく凹凸感の強調(Emphasize of Ridge by Using Visuotactile Cross-Modal Phenomenon)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=2012_VisuoTactileCrossModal.jpg,right,around,nolink,320x196);

近年タッチパネルが急激に普及している.そしてこのタッチパネルに凹凸を付加する研究が数多くなされているが,これらの手法は機械的制御装置を必要とするため,携帯端末への搭載は難しいと考えられる.そこで本研究では,簡便な実装で平面のタッチパネルに凹凸を付加する手法を提案する.キーボードの形に微小な凹凸のついたシートを貼り,キーボードを表示した時にのみ視触覚クロスモーダル現象によってその凹凸を知覚することを考えた.この手法の有効性を検証する実験を行った結果,視覚的手がかりを付加することで凹凸がより大きく知覚されることが分かった.

In these days, touch panels are used for many devices, and there have been many proposals to add tactile sensation to touch panels, which require additional electro-mechanical components. In this research, we propose a simple method of adding tactile sensation of a bump, just by a thin sheet. The sheet has bumps that are haptically imperceptible, but once a visual stimuli such as a line is presented, visuo-tactile cross-modal mechanism induces haptic bump. We tested the effects of a visual cue and height of the bump.
The result showed that the visual cue surely enhances the bump feeling.

- 横山,蜂須,佐藤,福嶋,梶本:視触覚クロスモーダルによる凹凸知覚の鋭敏化,第17回日本バーチャルリアリティ学会大会[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR2012_yokoyama.pdf&refer=publications,pdf);]&br;
-Maki Yokoyama, Taku Hachisu, Michi Satou, Shogo Fukushima, Hiroyuki Kajimoto, Control of Ridge by Using Visuotactile Cross-Modal Phenomenon, Interactive Tabletops and Surfaces 2012, 11/11-14, 2012[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ITS2012_yokoyama.pdf&refer=publications,pdf);]&br;
-横山,蜂須,佐藤,福嶋,梶本:視触覚クロスモーダル現象を用いたタッチパネルへの触覚フィードバックの付加,第10回研究会力触覚の提示と計算,2013[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=rikisyokkaku_yokoyama.pdf&refer=publications,pdf);]&br;

&aname(ARToothbrush);
**歯磨き音の変調による歯磨き感拡張(Augmentation of Toothbrush by Modulating Sound Resulting fromBrushing) [#j47ebb9a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=AR%20Toothbrush.png,right,around,nolink,320x240);

歯磨きは口内衛生の保持,虫歯・歯周病予防のめに日常的に行うべきである.しかし歯磨きは
その単調な作業ゆえにしばしば正しく行われないことがある.本研究では歯磨き音を変調して提示するこ
とでユーザの歯磨きの印象を修飾し,歯磨きに対するモチベーションを向上させることを試みる.被験者
実験より歯磨き音の音量を増幅し,周波数を変調することでユーザの歯磨きに対する快・不快感,達成感
に優位な差が生じることを確認した.

Brushing teeth is a daily habit to maintain oral hygiene, including the maintenance of oral cleanliness and prevention of caries and periodontal disease. However, tooth brushing is often not carried out correctly or forgotten because the task is boring. Although several works have contributed to improving brushing performance and motivation, the feedback seems to be very remote from the brushing itself, i.e., not intuitive. In this study, we establish two objectives to deal with these issues. The first is not to present information on a visual display, but to augment the ordinary tooth brushing experience consisting of haptic and auditory sensations, while the other is to design the modulation so that users feel as if their teeth are gradually becoming cleaner, thereby providing the necessary motivation. To achieve these aims, we propose a novel approach to augment the tooth brushing experience by modulating the brushing sounds to make tooth brushing entertaining in an intuitive manner. A microphone embedded in the toothbrush records the brushing sounds, which are presented to users after being modified by a PC. In the experiment, we demonstrate that increasing the sound gain and manipulating the frequency can control the overall impression of brushing by giving a sense of comfort and accomplishment.

&aname(line);
**ラインセンシングによる近傍環境の触知覚インタフェース(Line-Sensing Haptic Interface for Perception of Close-Range Object)[#iee96d20] 
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=linesensing.jpg,right,around,nolink,320x201);

視覚障害者のための電子歩行補助デバイスが数多く開発されてきたが,多くの場合一点のみをセン
シングするため環境全体を把握するためには長時間の走査運動を必要としていた.そこで本研究では,ライン
状の奥行き距離センシングとピンアレイ式二次元触覚ディスプレイを用いて奥行き方向の断面を呈示する歩行
補助デバイスを提案する.&br;&br;
Numerous electronic travel aids (ETA) for visually impaired people have been proposed. However, they often take a long time to scan and understand the surrounding environment. In this paper, we propose a novel ETA based on combination of 1-D line depth sensing and 2-D tactile display.

-中村,栗原,蜂須,佐藤,福嶋,梶本:ラインセンシングによる近傍環境の触知覚インタフェース,第10回エンタテイメントコンピューティング」[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ECpaper.pdf&refer=index.php&refer=publications,pdf);]
-中村,栗原,蜂須,佐藤,福嶋,梶本:視覚障がい者のためのラインセンシングによる近傍環境における触知覚インタフェース,第10回研究会力触覚の提示と計算,2013[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=%E4%B8%AD%E6%9D%91%E5%8A%9B%E8%A7%A6%E8%A6%9A%E4%BA%88%E7%A8%BFVer3.pdf&refer=people%2Fnakamura,pdf);]

&aname(haction);
**頸部への振動刺激が姿勢にもたらす影響(Vibration Stimulus to Neck and Its Effect on Posture)[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=haction.jpg,right,around,nolink,200x200);
コンピュータゲームやコンテンツ鑑賞においてユーザに自己姿勢を呈示することは重要であり、従来は映像や音によって生じる自己運動錯覚や実際のモーションライドなどが用いられてきた。これに対して我々は、頸部に振動刺激を与えることで立位姿勢が少なくとも主観的に変化する現象に注目し、新たな自己姿勢呈示手法として利用できるのではないかと考えた。本現象は簡便な機構による生起が可能であり、頸部への振動刺激のみで生起するため視覚を阻害しない。本研究は、本現象を用いた姿勢制御の方法の確立を目的とする。
-菊池,渡辺,蜂須,佐藤,福嶋,梶本:頸部への振動刺激が姿勢にもたらす影響,エンタテインメントコンピューティング2012(2012年09月 神戸大学),2012.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2012kikuchi.pdf&refer=people%2Fkikuchi,pdf);]
&br;
&br;
&br;
&br;
&br;
&br;


&aname(click);
**機能的電気刺激を用いたボタンの高速連打(High-speed Continuous Clicking Motion using Functional Electrical Stimulation) [#yc9cd785]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=click.jpg,right,around,nolink,228x200);

ゲームや楽器演奏,調理,スポーツなどにおいて,ユーザが高速かつ周期的な運動を求められる場面がある.こうした運動は動かす身体部位や順序などの戦術に大きく左右され,その習得が難しい.そこで我々は,機能的電気刺激を用いて高速な周期運動を補助することを試みる.本稿では特にボタンの連打に着目し,最適な電極の配置および筋電気刺激のパラメータを検討する.

-加藤,西村,蜂須,佐藤,福嶋,梶本:機能的電気刺激を用いたボタンの高速連打,エンタテインメントコンピューティング2012 (2012年9月 神戸大学),2012.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2012_paper_katoh.pdf&refer=people%2Fkatoh,,pdf);]&br;
&br;&br;&br;&br;&br;

&aname(Tokutoku);
**徳利の「トクトク感」のモデル化および再現(Model and Reproduce "Toku-toku" Sensation of Tokkuri) [#rc9301c6]; [#c0ee72a0]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tokutoku.jpg,right,around,nolink,240x170);

飲食物を食べる,飲む際の音や触覚は対象の印象を大きく左右することが知られている.これに対して我々は,実際に口に運ぶ前の「演出」としての音や触覚が対象の印象を変えるのではないかと考えた.そこで本研究では液体に関する演出を目指し,徳利で液体を注ぐ際の振動に着目した.徳利は液体を注ぐ際の「トクトク」と言い表される振動で知られている.我々は,この振動を変調することでその液体の印象を変えることができるのではないかと考えた.本稿では,実際に記録された振動の解析に基づくモデル化を行い,これを人工的に再現するデバイスを製作する.

-池野,岡崎,蜂須,佐藤,福嶋,梶本:徳利の「トクトク感」のモデル化および再現,エンタテインメントコンピューティング2012 (2012年9月 神戸大学),2012.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2012_Tokkuri.pdf&refer=publications,pdf);]&br;
&br;&br;&br;&br;&br;

&aname(ganriki);
**開散性眼球運動を用いた奥行き方向への入力の提案(Pressing the button by divergence eye movement) [#yc9cd785]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pushbutton.gif,right,around,nolink,228x200);

PC の入力手法として提案されている視線入力は,ディスプレイ上の視点位置をカーソル座標として用いることで手を使わない操作が可能となるが,ボタン等の選択動作が視線移動と区別されにくいという問題が存在する.そこで我々は,開散性眼球運動を計測することで画面奥行き方向への視点移動を検出し,その奥行き方向への移動を選択動作とする手法を提案する.本稿では,ボタン押し込み動作における提案手法の有用性を従来手法と比較した. 

A gaze input interface offers hands-free operation by using the view-point position as the cursor coordinates on the display. However, the selection operation of a button is indistinguishable from viewing; this is known as the Midas touch problem. We propose a new input 
method that measures divergence eye movement, thereby enabling users to “press” a button by moving their viewpoint forward. Comparison of our method and the conventional blinking input method confirms that input speed and accuracy are similar. 

-工藤,岡部,蜂須,佐藤,福嶋,梶本:開散性眼球運動を用いた奥行き方向への入力の提案,エンタテインメントコンピューティング2012 (2012年9月 神戸大学),2012.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2012_kudo.pdf&refer=people%2Fkudo,,pdf);]
-工藤,岡部,蜂須,佐藤,福嶋,梶本:開散性眼球運動による奥行き方向への視線入力手法,第151回ヒューマンコンピュータインタラクション研究会 (2013年02月 静岡),2013.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=HCI2012_kudo.pdf&refer=publications,pdf);]
-S.Kudo, H.Okabe, T.Hachisu, M.Sato, S.Fukushima, H.Kajimoto: Input Method Using Divergence Eye Movement, CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris, France.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=CHI_kudo.pdf&refer=publications,pdf);]&br;

&aname(skeletouch);
**Skeletouch: 透明電極を用いた電気触覚ディスプレイ(Skeletouch: Transparent Electro-Tactile Display for Mobile Surfaces) [#m182bfe1]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=skeletouch.jpg,right,around,nolink,320x240);

現在マルチタッチインタフェースの普及に伴い、画面に触れるというインタラクションは一般的なものとなった。しかし現在のタッチインタフェースはタッチ時の豊富な視覚的インタラクションとは裏腹に触覚が変化せず、視覚のみに頼って操作するという状況にある。電気触覚ディスプレイは次の4つの点でマルチタッチインタフェースに適している。第一に触覚呈示に電極しか必要とせず、透明化、薄型化が比較的容易である。第二に高解像度な触覚呈示が可能であり、形状情報を伝えることもできる。第三に原理的に指を動かさなくても刺激を生成する事ができるため、指を歪ませるだけのようなインタラクションにも応用可能である。第四に電気刺激を行うと同時に皮膚抵抗計測を行うことが出来る、すなわちマルチタッチセンサ機能を生来的に持っている。

An electro-tactile display is a possible candidate for a truly tangible multi-touch interface for four reasons. First, it only requires an electrode substrate that can be made transparent and thin. Second, it has a potential to present high-resolution tactile information of 3mm or less, which is preferable for shape presentation. Third, it's principle is active so that it does not require user's finger motion. Fourth, the electrical stimulation  can be innately used for multi-touch sensing. This paper introduces a prototype transparent electro-tactile display mounted on mobile devices. 

[[Movie:http://youtu.be/fN9cwVhYuEI]]

*2011- [#j32f5a87]

&aname(augmentedkehai);
**ホラーゲームの背景音響における低周波音域強調を用いた気配感の拡張(Obstacle Sensation Augmented by Enhancing Low Frequency Component for Horror Game Sound)  [#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kehaikan.JPG,right,around,nolink,320x240);
コンピュータゲームは現実環境では不可能な心理作用をユーザに提供する。特にホラーゲームはその作用が大きい。現代のホラーゲームは幽霊を可視化したり背景音響を駆使することでユーザーに興奮を与えている。視覚障害者は環境音から自身の位置を把握する障害物感覚(obstacle sense)を有していることが知られており、この感覚を応用し、ゲームにおける背景音響の中に含まれる「気配感」を拡張する手法が提案されている。本研究は、背景音響の低周波領域強調と高周波領域抑制を同時に行うことで効果的な気配感が得られることを示した。

Horror computer games provide users with a mental stimulation that the real world cannot. Current horror games can provide the user with a
visible ghost and stereo background sound to thrill the user. Inspired by obstacle sense- blind people localizing only with hearing, a novel method
to augment existence is proposed. Obstacle sense is caused mainly by coloration by reflected sound and the attenuation by shielding. By focusing
on the attenuation, we found an effective sense can be created by decreasing high frequency component and increasing low frequency component
simultaneously. Experiments were conducted to evaluate our proposal.

-S. Zhao, T. Hachisu, A. Ishii, Y. Kuniyasu, H. Kajimoto: Obstacle Sensation Augmented by Enhancing Low Frequency Component for Horror Game Sound, 
ICAT'11, 
11/28-30, 2011, Osaka, Japan.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=ICAT%20Poster%20Manuscript.pdf&refer=publications,,pdf);]
-S. Zhao, T. Hachisu, A. Ishii, Y. Kuniyasu, H. Kajimoto: Augmentation of Obstacle Sensation by Enhancing Low Frequency Component for Horror Game Background Sound, AH'12, 3/8-9, 2012, Megève, France. [&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AH-camera%20ready_zhao.pdf&refer=publications,,pdf);]

&aname(piloerection);
**前腕部体毛の立毛制御による驚き感情の増幅(Enhancement of Surprise Feelings by Controlling Piloerection on the Forearm) [#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=piloerection.gif,right,around,nolink,320x240);
椅子やジャケットなどに振動子を組み込み、映画などの視聴覚コンテンツに則して触覚を提示する装置が提案されている。これらは触刺激によってコンテンツのリアリティを高める事で高い没入感や感動を喚起させている。これに対して我々は、視聴覚コンテンツによって喚起される感情や生理変化を直接促すことで高い没入感や感動を作り出すことを提案する。本稿では生理変化の一種として、人が感動した際や興奮した際に生じる立毛現象に着目する。体毛は帯電した絶縁体を接近させると立毛する。我々は身体周辺を絶縁体で覆い、その絶縁体に高電圧を印加する事で静電気力によって全身の体毛を立毛させる。特に人の立毛現象は交感神経によって支配されているので、交感神経の活動と共に立毛を制御すれば自然な情動提示が実現すると思われる。そこで我々は皮膚電位反応によって人の交感神経活動を計測し、その計測結果に則して立毛現象を制御し、コンテンツへの没入感や感動を高める。

There have been many proposals that add haptic stimulation to entertainment contents such as movies and music. These technologies create immersive experience by improving the reality of movie and music. By contrast, we present a method to enrich the quality of experiment by enhancing the emotion evoked by these contents. In this paper, we focused on piloerection which is a kind of involuntary emotional reaction. Our hypothesis is that it is not only an emotional “reaction”, but it can work as an emotional “input”, that enhance the emotion itself. We constructed a device that controls piloerection on the forearm by electrostatic force. From a psychophysical experiment, we revealed that the piloerection system has enhancement effect on surprise feeling.

-福嶋,梶本:前腕部体毛の立毛制御による驚き感情の増幅,第16回日本バーチャルリアリティ学会大会(2011年9月 函館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR_Fukushima_%20Piloerection.pdf&refer=publications,,pdf););]
-S. Fukushima, H. Kajimoto Facilitating a Surprised Feeling by Artificial Control of Piloerection on the Forearm, AH '12, March 08 - 09 2012, Megève, France;&color(red){''Best Paper Award!!''};
-[[movie(Youtube):http://www.youtube.com/watch?v=m5GSSbSabGI&list=UUAQrGH60EW1Lkl_gm-73e_A&index=3&feature=plcp]]

&aname(chromatic);
**鍵盤打楽器打鍵時に生じる触覚的材質感の再現(Virtual Chromatic Percussions Simulated by Pseudo-Haptic and Vibrotactile Feedback) [#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=VirtualChromatic.png,right,around,nolink,320x240);
PCによる楽器演奏の再現は音楽ゲームという一つのジャンルを確立し,世代を超えて楽しまれている.近年の運動入力型インタフェースの普及でより直感的な演奏が可能になった一方で,運動入力の結果ユーザに返される触覚情報は単純な振動の呈示に留まっている.そこで我々は楽器演奏時に生じる触覚の再現を試みる.本稿では鍵盤楽器(鉄琴,木琴)打鍵時の触覚的材質感呈示を実現するシステムの製作について報告する.

Musical video games that allow users to play expensive musical instruments in a virtual environment constitute one of the most popular genres in the field of video games. Recent developments in motion input technology have enabled users to play the instruments intuitively and immersively. However, output technology, in particular haptic feedback, is not as advanced as input technology. We believe that providing a haptic sensation enriches the content of musical video games since the results of the motion input are fed back. To enrich the haptic sensation, we propose a system for playing virtual chromatic percussion, where the haptic feedback changes according to the instrument, as well as the acoustic feedback. In this paper, we propose a system describing a novel stick type controller and pseudo-haptic feedback to enrich the haptic sensation of the content. We also present an application that provides a virtual environment for playing two chromatic percussion instruments, namely the xylophone and glockenspiel.

&aname(katikati);
**腕立て伏せ時の「カチカチ感」付与による運動感覚の拡張(Augmentation of Kinesthetic Sensation by Adding “Rotary Switch Feeling” for Push-Ups)[#h330247a]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=katikati320.gif,right,around,nolink,320x240);
筋力トレーニングにおいて効率良く筋力を増強させるためには,正しい姿勢で運動することが重要である.しかし自らの姿勢を詳細に把握することは困難である.そこで本研究では,運動に同期した新たな触覚的手がかりとしてロータリスイッチ的触覚フィードバック「カチカチ感」を呈示することを提案する.実際に腕立て伏せを例にとり、カチカチ感呈示デバイスを肘部に装着することで肘部運動感覚の鮮明化および肘屈伸の教示を試みる.実験結果から,カチカチ感の呈示によって運動感覚が鮮明になるに従い,かえって運動量自体は減少する傾向があることが確認された.

In sports, dancing and playing music, it is important to achieve correct body movement as it greatly affects performance. However, matching one’s movement with ideal movement is fundamentally difficult, because we do not have a detailed perception of our own body movement. In this study, we propose to present “rotary switch feeling” feedback as a new haptic cue. A periodical ticking sensation, like that of a rotary switch, can be presented at each joint so that the user vividly perceives his/her movement. This paper presents a simple mechanical prototype that is attached to the elbow.
&br;

-栗原,國安,蜂須,佐藤,福嶋,梶本:腕立て伏せ時の「カチカチ感」付与による運動感覚の拡張,エンタテインメントコンピューティング2011(2011年09月 日本科学未来館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2011kurihara.pdf&refer=people%2Fkurihara,pdf);]
-Y. Kurihara, Y. Kuniyasu, T. Hachisu, M. Sato, S. Fukushima, H. Kajimoto: Augmantation of Kinesthetic sensation by Adding "Rotary Switch Feeling" Feedback, 3rd Augmented Human International Conference, March 8-9 , 2012, Megève, France.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=AH12kurihara.pdf&refer=people%2Fkurihara,pdf);]
&br;
&br;
&br;

&aname(elec);
**手部筋肉への機能的電気刺激による指先に対する触覚提示(Geometric Relief Presentation to the Fingertip by Using Functional Electrical Stimulation to the Hand Muscles) [#h330247a]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=hp_pic.jpg,right,around,nolink,320x240);

近年、タッチパネルにおける指先への凹凸感の提示方法として、タッチパネルそのものが振動し触覚提示する手法や、ピンアレイを用いて物理的にパネルを変形させる手法が用いられている。しかし、これらの手法では提示面に振動子やピンなどの大掛かりな実装が必要であり、提示面が限定されるなどの問題点も存在する。そこで本研究は、手部に装着するウェアラブルデバイスにより、凹凸を知覚させることを目指す。デバイスから骨格筋へ電気刺激することで、指先との接触面に水平方向の力を生み出し、実際の凹凸面を指でなぞった際に生じる筋収縮とそれに伴う筋・皮膚感覚を生起させる。これを実現することで、小型デバイスによる高いリアリティの凹凸感を提示することができ、タッチパネルはもちろんプロジェクタ投影された壁や机などへの、触覚提示面を限定しない汎用性を持った触覚提示が可能であると考えられる。

Geometric relief presentation techniques for touch screen have been proposed, but these techniques require large-scale equipment. In this study, we aim to present geometric relief by using FES (Functional Electrical Stimulation) device attached to the hand. Produces horizontal force by the FES drives a finger that touches the surface. It generates skin sensation and muscular contraction similar to that occurs when tracing the actual uneven surface by the finger.
&br;
&br;
-宇戸,岡崎,佐藤, 福嶋,梶本:手部筋肉への機能的電気刺激を用いた指先への触覚提示,第16回日本バーチャルリアリティ学会大会(2011年9月 函館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR_udo.pdf&refer=publications,,pdf);]
-宇戸, 岡崎, 佐藤, 福嶋, 梶本:手部への電気刺激を用いたタッチインタフェースのための触力覚提示手法の検討, インタラクション2012(2012年3月 日本科学未来館), 2012.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=int2012_udo_final.pdf&refer=publications,,pdf);]

&aname(shuchu);
**注意領域への集中力向上を目的とした領域外における視覚刺激(Visual Stimulation Outside Work Area to Improve Concentration of Attention on the Area) [#h330247a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tachibana_pic.jpg,right,around,nolink,320x240);

学習環境や就業環境において,頻繁に周囲に視線が向いてしまう状況では作業に専念できない.また,集中して作業をしている時は視線が作業領域に固定され周囲の環境が気にならなくなる.ここで,注視と集中度が相関するならば,作業領域への視線誘導によりユーザの注意集中を向上させることが可能であると言える.本研究では,作業領域へ視線を誘導する視覚刺激を提示することで,その領域への注意集中を向上させることを目的とする.

There were numerous attempts to induce concentration by background music or odor. However, they have drawbacks such that speaker and aroma are sometimes annoying to the surrounding people, while headphone simply blocks communication. To cope with this problem, we proposed to use visual stimulation as a new way to induce concentration. It is well-known that our gaze is fixed on the work area while we are concentrating on the work. This fact implies possibility that user's concentration will be improved by visually moving pattern that guides the eye gaze to the work area. In this paper, we explored the influences of the stimulus pattern of the user's concentration by presenting the visual stimulus outside the work area.
-橘,岡部, 佐藤,福嶋,梶本:注意領域への集中力向上を目的とした領域外における視覚刺激,  第16回日本バーチャルリアリティ学会大会(2011年9月 函館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VR_Tachibana.pdf&refer=people%2Ftachibana,,pdf);]

&aname(palm);
**掌タッチパネル(A Touch Screen in the Palm) [#h330247a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=PalmTouchPanel.jpg,right,around,nolink,345x162);

タッチパネル型の携帯情報端末が普及している。タッチパネルは画面の上で操作するUI(User Interface)である。これに対して我々は、画面ではなく、タッチパネルを把持した掌の上で操作する体験が得られるUIを提案する。これを実現するためにタッチパネルの背面に電気触覚ディスプレイを貼付し、タッチパネルへの指先の押下を電気触覚として背面の掌に提示すると共に、画面の映像も触刺激として掌に提示する。掌の上で操作することで、従来視覚的にしか認識できなかったグラフィックスの位置や感触や動きやリアクションなどを掌の触覚として認識出来る。そのため、より正確にタッチパネルを操作できるようになると考える。

We present the method to use the palm as a touch screen. A user holds the mobile device which attached an electro-tactile display on the back of the device. The visual information (eg., software keyboard and icon) and contact with the finger in front of the screen are transmitted to the palm as tactile stimulation by the electro-tactile display. In this way, user can operate such the visual information as software keyboard without seeing it. In this paper we propose the mobile device allowing the palm to be used as touch surface.

-S. Fukushima, H. Kajimoto: Palm Touch Panel:Providing Touch Sensation Through the Device, In ACM International Conference on Interactive Tabletops and Surfaces, ITS ’11, Page 79-82, Kobe, Japan, , November 13-16, 2011.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=PalmTouchPanel%28ITS2011%29.pdf&refer=people%2Ffukushima%2Fpublications,,pdf);]
-福嶋,梶本:掌と同化したタッチパネル,CEDEC2011,2011[[CEDECページ:http://cedec.cesa.or.jp/2011/program/poster/C11_P0216.html]];
-[[movie(Youtube):http://www.youtube.com/watch?v=FBOxecE_Z4o&feature=player_embedded]]

&aname(heartbeat);
**胸部への触覚提示を用いた好意の生起(Evocation of Positive Feeling toward a Person by Tactile Stimulation to Chest)[#h330247a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=mypage2.jpg,right,around,nolink,320x240);

人は好みの異性を目にした時、心拍の上昇や胸が締め付けられたような感覚を生起することがある。これらは一般的に「胸キュン」と呼ばれている現象で、相手に対して好意を抱いたときに生じる生理的興奮である。また、「胸キュン」が夫婦やカップルの間で互いの良さを再確認するきっかけになることもあり、新鮮味のなくなった関係を再び良好なものにするために非常に重要な役割を果たすと考えられる。そこで本研究では「胸キュン」を人工的に発生させることによって、人の好意を生起させることを目的とした。我々はユーザの胸部にスピーカーを装着し、そのスピーカーから心拍と同期した振動を提示する。これにより、ユーザはスピーカーを自分の身体の一部であるように感じる。この状態で、振動に様々な変化を加えることによって「胸キュン」を再現することを試みた。

When a human sees the opposite sex, rising heart-rate is sometimes perceived. This physiological phenomenonwork as a signal of reconfirming a one's positive feeling toward the other. Therefore, there is a possibility that we can modify one’s feeling toward the other by presenting pseudo heartbeat. While there were some previous works that presented pseudo heartbeat by visual or auditory cues, we proposed to use tactile cue that is generated by a vibrator on a chest. We also conducted an experiment to confirm that positive feeling toward a person is elicited by the tactile cue.
-西村,粟生, 石井, 佐藤,福嶋,梶本:胸部への触覚提示を用いた好意の生起,  第16回日本バーチャルリアリティ学会大会(2011年9月 函館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=VRSJ-nishimura-r9r.pdf&refer=people%2Fnishimura,,pdf);]&br;
-西村, 石井, 佐藤,福嶋,梶本:自己の心拍を触覚提示するデバイスの検討,インタラクション2012(2012年3月 日本科学未来館),2012[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=165_1052.pdf&refer=people%2Fnishimura,,pdf);]【展示発表】 &color(red){''インタラクティブ論文賞ファイナリスト''};&br;
-N. Nishimura, A. Ishi, M. Sato, S. Fukushima, H. Kajimoto: Facilitation of Affection by Tactile Feedback of False Heartbeat, CHI2012 , May5-10 , 2012 , Austin , Texas , USA.2012[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=p2321.pdf&refer=people%2Fnishimura,,pdf);]【ポスタ発表】


&aname(sofa);
**ソファを介した遠隔コミュニケーション[#iee96d20]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tele-sofa.jpg,right,around,nolink,240x120);
本研究では、ソファの隣に他人が座ると振動や音などの情報からその人の存在を知覚できるこ
とに着目し、ソファを介した遠隔コミュニケーションの実現を目的とする。本稿では人がソファに座った際に生
じる触覚刺激と聴覚刺激について、どちらの要因が人の存在感の知覚により大きな影響を与えるかを比較した。
その結果、聴覚刺激より触覚刺激の方がより容易に人の存在感を伝えうることがわかった。今後はこの実験結
果をもとに、遠隔コミュニケーション用ソファを設計する。 

-熊谷, 横山,佐藤,福嶋,梶本:ソファを介した遠隔コミュニケーション,エンタテインメントコンピューティング2011(2011年09月 日本科学未来館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EC2011.pdf&refer=publications,,pdf);]


&aname(att);
**前腕部への触刺激に対する温度感覚の重畳 (Addition of Thermal Sensation to Tactile Stimulation on the Forearm ) [#h330247a]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=att1.jpg,right,around,nolink,320x212);

温覚刺激を皮膚に提示しながらその近傍に触刺激を提示すると、触刺激に温覚が重畳されるという現象が知られている.温度感覚の空間分解能の低さが一因であるという意味では,近傍点同士の温度感覚が穴埋めされる温度錯覚(thermal referral)と類似の現象であると考えられる.一方で本現象においてどのような触刺激がこの現象に寄与するかは未だに解明されていない。そこで本研究では、これらの現象に関与する機械受容器を特定することを目的とする。我々は人の前腕部にペルチェ素子を貼付し、その近傍に振動刺激を提示した。振動刺激に重畳される温度感覚と振動刺激周波数の関係を調べることで本現象の機序を調べた。

We found a phenomenon that if a subject is presented heat stimulation and vibratory stimulation 
simultaneously  on  the  forearm,  the  subject  perceives  the  heat  sensation  on  the  position  of  the  vibratory 
stimulation. It is a similar phenomenon to the illusion called thermal referral. To reveal the mechanism of the 
phenomenon, we focused on which kind of mechanoreceptor is responsible for the phenomenon. We varied 
the frequencies of vibratory stimulation to stimulate different mechanoreceptors. 

-渡辺, 大原, 國安,佐藤, 福嶋,梶本:前腕部への触刺激に対する温度感覚の重畳 ,第16回日本バーチャルリアリティ学会大会(2011年9月 函館),2011[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=vrwatanabe.pdf&refer=publications,,pdf);]

&aname(CylindricalElectrode);
**円筒形状の電気触覚ディスプレイ (Cylindrical Electrode) [#v5b18445]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=CylindricalElectrode.jpg,right,around,nolink,320x240);
遠隔医療やロボットレスキュー等、遠隔操作環境における繊細な手先作業を必要とする場面は数多い。これを可能とするためには、操作者の手指の姿勢計測だけでなく、適切な触刺激をフィードバックする必要がある。このような手指用入出力装置、いわゆるマスタハンドは、これまでそのほとんどが触覚提示装置のサイズの制約から指の末節のみを対象としており、手掌部全体を用いる多くの実作業への適用は難しかった。これに対して電気触覚ディスプレイは薄型軽量で形状の自由度が高いため、手掌部全体への触覚提示に適していると考えられる。そこで本研究では、手で握り込めるサイズの円筒の表面に電極を多数設けた円筒形マスタハンドを提案する。~

Precise manual work is frequently required in remote and virtual en-vironments. Cutaneous feedback to the whole hand is a key element in achieving this goal; however, most haptic I/O systems for the hand only present haptic sensations to the tips of the fingers. I propose to use an electrocutaneous display to construct a whole-hand cutaneous feedback system. The display shape is cylindrical, to allow it to be grasped as a handle, and integrated with kinesthetic display. The prototype contains 1536 (64 by 24) electrodes that work both as stimulators and touch sensors.
- H. Kajimoto, Design of Cylindrical Whole-hand Haptic Interface using Electrocutaneous Display, EuroHaptics2012, June 12-15, 2012, Tampere, Finland.
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=EuroHaptics2012Kajimoto_v2.pdf&refer=publications,,pdf);]
- 梶本:電気触覚ディスプレイを用いた円筒形マスタハンドの設計,第12回計測自動制御学会システムインテグレーション部門講演会,2011.[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=SI2011Kajimoto.pdf&refer=publications,,pdf);]
-[[movie(Youtube):http://www.youtube.com/watch?v=fUaxQJf-t68]]

&aname(HaCHIStick);
**HaCHIStick: Simulating Haptic Sensation on Tablet PC for Musical Instruments Application [#xb2dda03]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=HaCHIStick.jpg,right,around,nolink,320x240);
We propose a novel stick-type interface, the "HaCHIStick," for musical performance on a tablet PC.
The HaCHIStick is composed of a stick with an embedded vibrotactile actuator, a visual display, and an elastic sheet on the display. By combining the kinesthetic sensation induced by striking the elastic sheet with vibrotactile sensation, the system provides natural haptic cues that enable the
user to feel what they strike with the stick, such as steel or wood. This haptic interaction would enrich the user’s experience when playing the instruments. The interface is regarded as a type of haptic augmented reality (AR) system, with a relatively simple setup.

*2010- [#j32f5a87]

&aname(inside);
**手部内におけるファントムセンセーション(Phantom Sensation inside of the hand) [#h330247a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=inside.jpg,right,around,nolink,320x240);

従来のポータブル機器における触覚提示ではクリック感やテクスチャ感などといった2次元平面上での触覚提示が可能である。これに加え、更に奥行き情報を触覚的に提示することが出来れば、ポータブル機器で3次元的な触覚提示が可能になると考えられる。そこで、我々はデバイスを把持した手の中にファントムセンセーションを生起させることで奥行き感を触覚的に再現する。試作デバイスは手の平と手の甲に振動子をつけこれを同時に振動させる簡便な機構である。

Recently a glasses-free 3D display comes into common use in smartphones and handheld game devices. Our aim is the haptization of 3D visual images in these portable devices. In order to achieve this goal, we focus on the "hand" that holds the portable device, and present the depth haptic sensation "inside" of the hand so as to match the depth of a 3D visual image. To provide haptic sensation insight of the body, we utilize Phantom Sensation. Phantom Sensation is a pseudo-tactile sensation that occurs when two or more mechanical or electrical stimuli are presented simultaneously to the skin. The basic characteristic of Phantom Sensation has been revealed by a number of researchers, but there has been no report that PhS arise in the body. In this paper we investigate if Phantom Sensation arise inside of the hand, summarize the basic characteristic of Phantom Sensation inside of the hand

-石井,福嶋,古川,梶本:ファントムセンセーションを用いた手掌部への貫通感提示,SICE_SI_2010,2010[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=asuka&openfile=2010_si_last.pdf,,pdf);];

&aname(pseudo);
**Pseudo-Haptic Feedback Augmented with Visual and Tactile Vibrations [#h330247a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=PseudoVibro.png,right,around,nolink,320x240);

Haptic sensations can be induced without requiring haptic devices through pseudo-haptic feedback by the influence of another sensory modality, such as vision. In this paper, we propose two novel approaches that combine pseudo-haptic feedback with visual and tactile vibrations in order to augment the overall haptic sensation. We would like to investigate the integration of pseudo-haptic feedback with vibratory feedback. The first technique enhances pseudo-haptic textures with a stripe pattern that provides a vibro-tactile stimulus. The second technique modulates the perceived material stiffness of a virtual object using vibratory models for visual and tactile feedback, introducing novel pseudo-haptic effect based on visual vibrations.

&br;
&br;

&aname(kusuguri);
**掌の上で動く他者の指先から得られる近接感(Tactile Proximity Sensation Induced by Other’s Finger Movement above One’s Palm) [#g567443d]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=IMG_4280_s_320x240.jpg,around,right,nolink,320x240);
くすぐられる仕草をされると,皮膚に触れなくともくすぐったく感じることが知られている.これは視覚・触覚に応答する多感覚ニューロンの活動により生じることが指摘されており,本研究ではこれを接触せずに得られる身体感覚として「近接感」と定義する.この近接感は視覚的手がかりのみを用いて誘発することが可能であることから,視覚提示装置のみで再現可能な感覚であると考えられる.この近接感を実触覚刺激と併用することにより,触覚モーダルを介した遠隔地間のコミュニケーションにおける触覚刺激にくすぐったさという意味付けが行えると期待できる.そこで本稿ではまず,他者の指先の運動を掌の上に視覚的に重畳させ,近接感を誘発させる手法を提案する. 

It is widely known that tickle sensation is not only induced by direct contact but also induced by the gesture near the body surface. This phenomenon can be utilized for the remote communication as a way to present pseudo haptic sensation with visual cue. In this paper, this pseudo haptic sensation was combined with vibration and tickle sensation was evaluated. The result revealed that combination of vibration and the visual cue presenting the gesture near the body surface induces as strong tickle sensation as the real tickle.

-[[movie(Youtube):http://www.youtube.com/watch?v=MeOnbdaQmtU]]

&aname(deaigashira);
**出会い頭の衝突回避を目的とした周辺視野への接近感提示(Visual Stimuli for Pedestrian Clash Avoidance Using Peripheral Vision) [#g567443d]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=yokoyama_EL.jpg,right,around,nolink,526x240);

車や人の交通の安全を守るために,進路上の危険を知らせる装置が数多く考案されてきた.例えば歩行者同士の出会い頭の衝突を防ぐために,見通しの悪い曲がり角にはミラーが設置されている.また,近年ではヘッドアップディスプレイを用いた仮想ミラーの研究も行われている.しかし,ミラーから相手の運動情報を解釈するためには,対象を注視し,脳内で画像を左右反転する必要があるため,多くの心的資源を要する.
そこで本稿では,思わず避けてしまいたくなるような接近感を、より少ない心的資源で提示することを考える.この接近感とは,「運動体が差し迫り,あたかも衝突するかのように感じる感覚」と定義する.また歩行者の接近は,注視の必要がある中心視野ではなく,広視野角を持つ周辺視野で知覚出来ることが望ましい.従って,死角から迫る歩行者の接近感を周辺視野で知覚可能な視覚刺激として,壁面に提示する手法を提案する.

A blind corner has a mirror to prevent collisions of pedestrians. However, the pedestrians need to gaze at the mirror and calculate the reflected image, which is a relatively high mental load. To cope with this problem, we propose to present easy-to-understand “approaching image” to peripheral vision. This visual stimulus is displayed on the wall, which is designed to look as if the wall is transparent. It is expected that this visual cue conveys distance and velocity information of the other pedestrian. The result of evaluation experiment showed that the participants are able to obtain the approaching sensation.

-[[movie(Youtube):http://www.youtube.com/watch?v=LcWfVHSs5_s]]

&aname(lenticular);
**歩行誘導における自己運動を用いたベクション場の設計(“Vection Field” for Pedestrian Traffic Control) [#g567443d]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=image3.gif,right,around,nolink,320x240);
現在の一般的な歩行誘導には記号や音声が用いられているが、歩行者はその意味を解釈する過程が必要であり、歩行者が行動をおこすまでに時間がかかる。こうした中、直感的に歩行者を誘導するウェアラブルな装置が考案されている。しかし、装置の着脱は歩行者にとって負担になると考えられる。
そこで我々は、直感的かつ装置の着脱を必要としない歩行誘導手段として、視覚誘導性自己運動感(ベクション)に着目した。本研究では、レンチキュラレンズを用いて歩行誘導に有効な視覚刺激を床面へ広範囲に呈示し、場が歩行者を誘導する「ベクション場」を形成する。レンチキュラレンズという受動素子を用いることで、視覚刺激は歩行者の動きに応じてた視覚刺激が完全無電源で生成される変化する。本研究では、レンチキュラレンズを用いた歩行誘導に有効な視覚刺激を、制作設計,評価する。


Today in general traffic field, visual signs and audio cues are used for pedestrian control. As the pedestrians need to acquire and recognize them, time delay between cognition and action occurs. To cope with this problem, some wearable devices were proposed that control the pedestrians intuitively. However, attaching and removing the devices are cumbersome and not practical. In this study, we propose a new visual navigation method for pedestrians using “Vection Field”, where the optical flow is presented on the floor. The optical flow is presented by using lenticular lenses. The lenticular lens, that is the passive optical element, generates the visual stimulus based on the pedestrian’s movement without electrical power supply. In this paper, we designed a basic visual stimulus and evaluated principle of our proposed method for the directional navigation. The results revealed that the optical-flow composed of stripes and random-dot pattern both displace pedestrian’s pathway significantly.

&aname(sasayaki);
**耳介への触覚刺激を用いた音響効果の増幅(The Enhancement of Hearing using a Combination of Sound and Skin Sensation to the Pinna) [#g567443d]
#ref(装着の様子縮小版2.JPG,nolink,right,around,320x240);
高臨場感技術の飛躍的な進歩によって録音された音楽や音声をより忠実に再現できるようになった。しかし再現された音響のみでさらなる音響体験を生み出すのは困難であり、別のアプローチが必要と考えられる。今回我々は音響を聴いたときに想起する「情動」に着目し、音響体験によって誘発される情動体験を強調することによって音響体験の質を高められると考えた。そこで音響に耳への皮膚感覚を付加することでヒトの音響体験をより魅力的にする手法を提案する。

Recent development in sound technologies has enabled the realistic replay of real-life sounds. Thanks to these technol-ogies, we can experience a virtual real sound environment. However, there are other types of sound technologies that enhance reality, such as acoustic filters, sound effects, and background music. They are quite effective if carefully prepared, but they also alter the sound itself. Consequently, sound is simultaneously used to reconstruct realistic envi-ronments and to enhance emotions, which are actually incompatible functions.
With this background, we focused on using tactile modality to enhance emotions and propose a method that enhances the sound experience by a combination of sound and skin sensation to the pinna (earlobe). In this paper, we evaluate the effectiveness of this method.

&aname(tokkuri);
**液体を注ぐ際の心地よさに着目した触覚ディスプレイの提案(The tactile display that presents a sensation of pouring liquids) [#g567443d]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=tokkuri.JPG,right,around,nolink,240x170);
さわり心地の良い毛布や押し心地の良いボタンと形容されるように,人間は触覚により「心地よさ」を知覚することができると考えられる.本研究では,触覚による「心地よさ」を提示するため,液体を注ぐ際に生じる振動触覚に着目した.液体の満たされた容器から液体を注ぐことで,「トクトク」といった音とともに、容器を把持した指先に微少な振動触覚が伝達される.本稿ではこの振動触覚を提示することで,体験者に「心地よさ」を提示するデバイスを製作する.

In this paper, we propose a novel tactile display that presents comfortable sensation to the user. We focus on the tactile sensation of pouring liquids. When we pour liquids that are in the bottle, we perceive sound like “tang” and mild vibrotactile sensation to the fingers grasping the bottle. We record and replay the vibrotactile sensation of pouring liquids by a simple tactile display

&aname(kachikachi);
**運動後に感覚呈示を行う触力覚運動教示システム(Motion Instruction System by Haptic Display Presenting Sensory Input after Motion) [#g567443d]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kachikachi.jpg,right,around,nolink,320x240);
従来の運動教示システムは望ましい行動を運動前に感覚呈示する,「感覚→運動」という流れに焦点が当てられてきた.しかし生理学的知見によれば,運動自身が感覚入力を制御しているという報告がされている.本研究ではこの知見を考慮し,新たな運動教示手法として運動の結果生じる感覚を運動後に拡張して呈示する,「運動→感覚」の手法を提案する.

Previous motion instruction systems with haptic displays have often been following "Sensation before Motion" flow, which means that desirable behavior is presented to one's sense before one's actual motion. However, they can't present motional feedback. This feedback is important for constructing one's body image. This paper proposes a new strategy "Sensation after Motion" flow that presents the enhanced sensory inputs after motion, to support acquiring his/her body image haptically.
&br;
&br;
&br;

&aname(taimou);
**体毛-毛包受容器構造に着目した触覚増強機構の製作(Tactile Enhancement Structure Focus on Hair Follicle Receptor) [#g567443d]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=taimou.JPG,right,around,nolink,320x240);

体毛-毛包受容器からなる受容器は,受容器の一部である体毛が体外に露出している点で他の受容器に比して特異性を持つ.また近年の研究により,無毛部では知覚されないような微小な力が体毛の寄与によって知覚される現象が報告されている.この構造を拡張することで,通常知覚不可能なほど微小な力が知覚可能になると考え,本機構の着想に至った.本機構ではマトリクス状に並べられた人工毛が外界からの微細な刺激により駆動され,皮膚表面への刺激を増強する.これは電気的機構を伴わず,形状の自由度が高いため,身体の多様な部位での装着が可能である.

Comparing with other receptors, hair follicle receptor has specificity that part of receptor is exposed to outside. Also, recent research showed that skin hair contributes to the perception of minute force which cannot be perceived with hairless skin. We considered that we can perceive minute force which is normally unnoticeable by extending this structure. Our idea of tactile enhancement mimics the structure of hair follicle receptor. In this mechanism, a matrix of artificial skin hair is driven by minute force from outside and it drives the skin surface. This structure can be used at any part of the human body because it is fully composed of passive elements.

&aname(guragura);
**手掌への触覚刺激により生起するバーチャルな倒立振子の再現(Reproduce of Virtual Inverted Pendulum by Tactile Stimulation on a Hand) [#l49de361]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=IMG_7343_small.JPG,right,around,nolink,320x240);
人が掌の上で倒立振子の安定化を行うとき、視覚情報と触覚情報を手掛かりにしていることは容易に理解できよう.我々はこの倒立振子の安定化における触覚刺激に着目し、倒立振子が与えている触覚刺激を人に提示することで倒立振子感の再現が可能であると考えた.そこで人が安定化を行う上で手掛かりにしている触覚刺激を明らかにするため、実験を行った.実験から具体的な触覚刺激については明らかにならなかったが、実験中に得られた内観報告から、人が倒立振子の安定化においては倒立振子と掌との接点回りのモーメントを知覚していることが予想された.本稿では、この実験内容と結果を報告するとともに、人に与えるべき刺激について考察する.

When a human balance inverted pendulum standing on a hand, human do that with visual, tactile and haptic cues. So we hypothesized that virtual inverted pendulum can be reproduced if human get right cutaneous cues. Therefore we observed cutaneous cues that human most use when they balance inverted pendulum.This paper reports on the design and results of the experiment that subjects balance inverted pendulum standing on a hand.

&aname(kiss);
**口腔における双方向コミュニケーションデバイスの開発(Development of a kiss-like remote mouth communication device for close relationships) [#g567443d]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kisscom.png,right,around,nolink,320x240);
本研究では,恋人や夫婦といった親密な関係にある者同士を対象とした遠隔コミュニケーションデバイスを提案する.コミュニケーション設計において,我々は深い愛情表現である「接吻」という行為に着目した.接吻は口腔における双方向触覚コミュニケーションである.したがって,遠隔地においても口腔に対して双方向に触覚提示をおこなうことで,親密な感情あるいは愛情の表現が可能になると考えられる.

In this study, we propose a novel remote communication device for close relationships like lovers. We focus on kisses, since kisses are haptic communications on the mouths that can express deep emotion. We considered that if we mutually present the haptic sensation to each mouth, we can convey the expression of emotion, deepen their relationship.
&br;
&br;
&br;
&br;
&aname(smallnull3);
**電気刺激を用いた指先への滑り感の提示(Pseudo Slipping Sensation to the Fingertip with Electrical Stimulation) [#g567443d]

#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=smallnull3.gif,right,around,nolink,288x216);

PCなどのポインタを操作するポインティングデバイスは,力制御による入力方式のポインティングスティック型と,位置制御による入力方式のタッチパッド型に大別される.前者は小面積での入力が可能であるが,曲線を描くような細かい操作が困難である.一方で,後者は直感的であり細かい操作が可能であるが,前者に比べ設置面積が大きくなってしまう.つまり,従来の入力インタフェースでは,入力環境の小面積化と直感性の両立は困難であった.
本研究では小面積かつ直観的操作が可能な入力インタフェースの実現のために,当研究室が発見した電気刺激を用いた滑り錯覚という現象を利用したポインティングデバイスを提案する.発見された滑り錯覚は,指の腹を接触させた状態で指先に水平方向の力を加えている時に,力の方向と逆の方向に移動する電気刺激を提示すると,指先が動いていないにも関わらず,力を加えた方向に自分の指が滑っていくように感じるものである.
この滑り錯覚を利用することにより,ユーザは指を動かすことなく,位置による入力をしているように錯覚させることができると考えられる.つまり,力制御型のような小面積な入力環境でありながら,位置制御型のような操作感が得られるポインティングデバイスが実現できると考えられる.

We found a new haptic illusion that causes pseudo slipping sensation. An electro-tactile display constantly presents moving pattern to a finger. When shearing force is applied to the finger which direction is opposite to the presented motion, the participant feels as if his/her finger moves with constant speed. As this illusion presents pseudo motion, it can be applied to a new type of pointing device that does not move, but presents motion to the user by the illusion, resulting in smaller workspace. In this paper, we investigated the occurrence condition of the illusion focusing on the shearing force of the fingertip and the velocity of the electrical stimulation.
&br;
&br;

*2009- [#d7039454]

&aname(skin);
**前腕部触覚提示による「手を牽く」方向提示(Presentation of direction by stimulation to the forearm skin) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=new.JPG,right,around,nolink,320x240);
触力覚による方向教示は,例えば書字トレーニングから歩行ナビゲーションまで幅広い応用が提案されている.しかしウエアラブル環境下で実現する場合,外力を出せないという問題がある.従来の機械的振動を用いた方向提示手法では直感性にやや欠け,またジャイロ効果や知覚の非線形性を利用した手法では重厚な装置の把持が必要であり,不要な振動感覚を生じてしまう問題があった.そこで我々は,直感的かつ手の動作を制限することなく方向提示を行うための手法として前腕部の牽引に着目した.本研究では、前腕部に装着したデバイスにより前腕部側面の皮膚を牽引する。これによりウエアラブルであるにも関わらず牽引された方向に力を感じることができる。この力を任意方向に対し生じさせることで,あたかも前腕部の牽引によって方向提示を受けているかのような感覚を実現する.

There are many kinds of project to navigate user’s way by tactile sensation. However, devices that use mechanical vibrations are not intuitive because we judge a meaning of vibration pattern. In addition, devices that use gyro effect or nonlinearity of human perception are not natural due to unnecessary vibration, and we should hold them in user’s hand. In order to resolve these problems, we propose a new wearable navigation method that pulls forearm skin. In our method, user’s both hands can be free. In addition, tactile stimulation is very soft and natural. In this paper, we report atractive capability of the method. Key Words : navigation, forearm skin ,wearable.

&aname(h-PhS);
**温度によって生じるファントムセンセーション(Phantom sensation induced by temperature) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=device.JPG,right,around,nolink,320x240);
ファントムセンセーション(PhS)は,皮膚上のある2点を振動刺激すると,2点を結ぶ直線上に一つの触振動感覚が生じる触錯覚現象として広く知られている.本研究は,触振動感覚以外に熱知覚に着目し,PhS像に熱的な性質が転移しうるのか,また熱刺激入力のみによってPhS像が生起するのかについての検証を行うものである.作成した装置を用いて,前腕上の離れた2点の温覚に対し刺激を行い,2刺激間に1つの熱源像が知覚されることが実際に確認された.2点の刺激の強度差・時間差による定位変化実験についても言及し,温度知覚において「熱ファントムセンセーション」が生じることを示す.~
(本研究は戦略的情報通信研究開発推進制度(092103992)の助成をうけたものである)

This paper describes "the heat phantom sensation" that is induced by stimulating two points of thermal stimuli. Phantom sensation is known as one of the tactile illusions that induce illusionary sensation between two or more vibratory stimuli. In this research, we focused on heat sensation. The heat phantom sensation has not been confirmed so far. We used two heat stimulators to prove existence of heat phantom sensation. We show that fundamental known characteristics of PhS by the vibration stimulation can be observed in heat phantom sensation.

&aname(apparent);
**触仮現運動における質感に関する研究(Study on character during haptic apparent motion.) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=APimg.jpg,right,around,nolink,220x234);
ヒトの腹部に仮現運動を提示したとき,ヒトが知覚する「刺激の太さ(知覚幅)」と「くすぐったさ(くすぐり感)」が振動子の振動周波によって変わるという新しい現象を発見した.本研究では振動子の個数など仮現運動に影響を与える要素に着目してこの現象の発生機序について検証を行い,仮現運動の知覚内容を主とした新たな知見獲得を目指す.

Although there are a lot of researches on the occurrence condition of haptic apparent motion, there are quite limited reports on the subjective quality of the illusory sensation. In this paper, we report a new haptic phenomenon that width perception during haptic apparent motion is affected by vibration frequency, especially when there are numerous stimulation points. We used five speakers of 5cm in diameter as stimulators. The stimulators were put on the abdomen, 12cm interval. When the stimulation frequency was 240Hz, we observed that the participants felt a very thin line of around 5mm in width. This dramatic effect had strong correlation with the stimulation frequency, and the higher frequency gave the thinner perception.

&aname(slow);
**スローモーション触覚提示技術(Presentation method of tactile sensation in slow motion) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=slow01.jpg,right,around,nolink,320x240);
映像におけるスローモーション再生は,実世界では確認できなかった物理現象を視覚的に捉え,またその異様さは独特の感動効果をもたらす.この効果は既に広く知られており,科学,芸術,エンタテインメントなど多くの分野で実際に用いられ始めている.そこで我々は,このスローモーション再生の効果は触覚にも存在するのではないかと考え,記録・再生装置を実際に製作し,触覚においても映像と同様の効果が存在することを確認した.本研究では,確認された効果を基に触覚をスローモーション再生する際に生じる人間の知覚特性について調査し,触覚のスロー効果を持ちいた新たな表現技法の確立やアプリケーションの製作を目的とする.

Now, we can enjoy slow motion contents of visual and audio easily. Slow motion technique gives us new impression for art and entertainment and help of breakthrough for science and technology. At this moment, we considered that tactile area also has the effect of slow motion replay, and confirmed the slow motion effect of tactile area by developing slow motion tactile player.  Our purpose of this project is to clarify specific effects of tactile slow motion such as conservation of physicality, and develop new tactile applications by this effect.

&aname(p_stimulus);
**周辺視野選択的な運動知覚を実現する視覚刺激の提案(Toward visual motion stimulus that is selectively perceived in peripheral visual field) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=oka-tikaku2.GIF,right,around,nolink,320x300);
動画像,あるいは静止画像に対する加工の一種として,画像に対して運動を付与または増強し,迫力を増す手法がこれまで様々に提案されてきた.画像に対し運動方向のフローを重畳する手法は効果的であると考えられるが,重畳させるパターン自体によって画質が劣化するという問題がある.そこで本研究では,視野中心では画質劣化が知覚されず,しかも視野全体では運動を知覚させる手法を提案する.人間の視覚はその特性から中心視野と周辺視野に分別され,ある閾値よりも高い時間周波数で提示された運動は周辺視野のみで知覚されることが知られている.本研究ではこの視覚特性を利用し,輝度コントラストの縞模様を,中心視野における時間解像度以下の時間周期になるように動かすことで,中心視野では劣化のない画像,周辺視野では運動を知覚するような視覚刺激を提示可能とする.

Many methods were proposed to augment visual motion for static pictures or movies. Though it is thought it's effective to add motion flow to the pictures, it has a problem that their spatial resolution gets worse. In this article, we propose a system that human don't perceive any deteriorate in foveal visual field, and human can perceive their visual motion in peripheral visual field by using moving striped luminance patterns correspond to a frequency that human can't perceive in foveal visual field. The visual field can divide in foveal visual field and peripheral visual field by its spatiotemporal quality, and it is said that peripheral visual field has more temporal sensitivity.
&br;
&br;
&br;

&aname(l_surface);
**液面知覚に関する研究(Tactile perception of the liquid surface) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=l_surface01.jpg,right,around,nolink,320x240);
水面に手や腕を浸すと、水と大気との境界を触覚として、はっきりと感じるという現象がある。水温を体温と等しくした場合により明瞭となることから、温度受容器ではなく機械受容器が関与していると考えられる。しかし、どのような物理的機序でこのような触覚が生じるのか未知の部分が多い。仮に我々が水圧そのものを知覚しているとすると、その圧力は水深に比例し、水深が0の水面において水圧は0である。そのため、水面を知覚するという現象において、単純に水圧を知覚しているということは考え難い。そこで本研究では,我々がどのようにして大気と液体の境界を触覚的に知覚しているのかを明らかにすることを目的とし,界面に作用するという点で我々が液面として知覚しているものである可能性の一つとして考えられる表面張力の寄与を検証する実験を行った.
さらに,皮膚とともに界面および液体に触れるという点で,我々が液面として知覚しているものである可能性の一つとして考えられる体毛の液面知覚の寄与を検証する実験も行った.


When we soak our hands or arms in the surface of water , there is a phenomenon which we can feel clearly its boundary between water and atmosphere as a sense of touch.  It becomes more distinctly when air temperature and water temperature are an equal, so it is thought it involves not the thermal receptor but the the mechanoreceptor. However, mechanism underlying the perception is not fully understood. If we perceive hydraulic pressure itself, its pressure is proportional to the depth, therefore we cannot perceive the surface, which hydraulic pressure is 0. This study aims to make clear how we perceive the boundary between atmosphere and water as a sense of touch, and we examined about surface tension which is thought as one of the most important possibilities affects an interface. 

&aname(elasticity);
**周期的な前腕運動中における手掌部の皮膚感覚抑制による弾性物体把持錯覚の研究(Haptic illusion of elasticity by tactile suppression on palm during periodical forearm motion) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=elasticity.gif,right,around,nolink,320x240);
これまでの触覚研究において,「アリストテレスの錯覚」のような静的な皮膚感覚における触錯覚が数多く報告されている.こうした中で我々は,前腕を上下に振る動作中に手掌へ定常的な振動触覚を与えると,前腕の動作に合わせて手掌上で弾性物体が弾んでいるかのような弾性物体把持錯覚が生じることを発見した.本錯覚は手掌への定常的な振動呈示による皮膚感覚と,前腕の上下運動による固有受容感覚変化によって生じる複合錯覚である.本研究では,周期的な前腕運動中に手掌へ与えられた振動に対する皮膚の刺激感度の時間的変化に着目し,本錯覚の発生機序を解明する.

In the current study about skin sensation, numerous precedents of haptic illusions perceived in static condition have been reported, such as the “Aristotle's illusion”. In this situation, we found out a new illusion as if an elastic object bounced on a palm to the accompaniment of a forearm movement if we gave a steadily vibratory tactile stimulation to the palm while moving the forearm vertically. This is a combined illusion of skin sensation by steadily vibratory tactile stimulation to the palm and proprioceptive sensation by vertical forearm motion. In this study, we investigate the mechanism of this new haptic illusion focusing on the temporal change of tactile suppression during periodical forearm motion.

&aname(ElectrocutaneousDisplay);
**皮膚インピーダンス情報を利用する電気触覚ディスプレイ(Electro-Tactile Display with Realtime Feedback of Skin Impedance) 2009- [#cb99f60a]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ElectroTouch.gif,right,around,nolink,320x240);

電気触覚ディスプレイは皮膚表面に配置した電極からの電気刺激により皮膚下の受容器につながる神経軸索を直接駆動する触覚ディスプレイである.簡易な構成が可能である点で実用性は高いと考えられるが,感覚を完全に安定化させることが難しかった.本研究では皮膚の電気的インピーダンスに応じたリアルタイム電流制御によって感覚の安定化を試みる.数十μsの単一パルス内部で数十回にわたるインピーダンス計測・刺激制御を行い,従来分離されていた計測フェーズと刺激フェーズを統一することで,誰もが安心して触れる電気触覚ディスプレイを実現する.

Elecro-tactile display is a tactile display composed of skin surface electrodes. It has many ideal features such as durability and energy efficiency, but it did not prevail as a standard device since quantity and quality of generated sensation is instable. One possible solution to the instability problem is to monitor skin electrical impedance. Previous works succeeded in measuring the impedance, but failed to construct true realtime feedback loop. In this paper, we show a new system that has a few microsecond feedback loop, which is sufficiently fast compared to ordinary electrical stimulation pulse (30 to 200 microseconds)

&aname(steam);
**蒸気圧覚に関する研究(A Study on Pressure Sensation by Steam) 2009- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=steam.JPG,right,around,nolink,320x240);
手を熱湯の上にかざしたとき、時として温度感覚以外に圧覚を知覚することがある。いくつかの理由が蒸気や、温度や、湿度や触覚受容器などのように存在しているであろう。この現象を利用することによって、新しい非接触触覚ディスプレーを提案することができるだろう。本研究では、各要素を切り離すことによって、この現象の理由の解明を試みる。

In rare cases, pressure sensation perceives besides the thermal sensation when the hand is held on the boiling water. Some reason would exist such as steam, temperature, humidity and tactile receptor. A novel non-contact tactile display could be proposed by applying this phenomenon. In this study, we try to solve the reason of this phenomenon by separating each element.
&br;
&br;

&aname(texture);
**空気圧変動による手掌部へのテクスチャ感提示(Presentation of texture feeling using air pressure change to a palm)2009- [#mb6a65a3]
#ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=zikken.PNG&refer=research&src=zikken.JPG,right,around,nolink,300x243);
触覚を知覚する受容器が振動を知覚する受容器であることは知られている。しかし、触感がどのような振動によりどのように知覚されているかはまだ明確にされていない。
我々は触感のうち特に布の手触り感といったテクスチャ感に着目した。本研究では、従来200Hzなど単一な周波数が提示されていたことが多かっため、2つの周波数の合成波などの複雑な周波数を提示できるとして、スピーカを利用した装置を利用した。波形パターンを組み合わせることで,例えば微細なテクスチャ感と全体的なやわらかさなど,従来は皮膚感覚ディスプレイと力覚ディスプレイで分離して提示せざるを得なかった複雑な感触を,単一の皮膚感覚提示装置で再生することを目的とする.

We suggested a Hi-Fi tactile display that presents tactile sensation to user’s palm. Due to wide band width of frequency, our display can output complex waveforms. Our display also can present very soft tactile sensation by using air pressure. By using this display, we succeeded in presenting realistic physicality of viscoelastic object. On this report, we confirm an ability of presentation of texture feeling such as carpet, hemp, nylon and other various cloths on the display to transmit more realistic physical phenomena by tactile sensation. Also we try to synthesize and output kinesthetic sense and tactile feeling on our display.


*2008- [#td88d7c6]

&aname(laugh);
**筋活動の計測を用いた笑いの増幅 (The Enhancement of Laugh by using Muscle activity) 2008- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=wgif.gif,right,around,nolink,320x240);
現在、バラエティ番組やコメディ番組等の映像コンテンツには観客の笑い声(いわゆるラフトラック)が人為的に付加されている。ラフトラックには、視聴者の共感作用に働きかけ笑いの閾値を下げる効果があるとされている。ただし、不自然なラフトラックや視聴者のおかしみに反してラフトラックを再生すると視聴者に違和感を与えてしまう。 
我々は視聴者の笑いに同期させてラフトラックを再生させる装置、笑い増幅器を製作した。本装置は、視聴者の周囲に人形を配置し、人形から笑い声を再生する。人形を介して観客の笑い声や存在感を実体化する事で視聴者の共感作用をさらに増幅できると考える。 
また、視聴者の笑いを検出するために剣状突起部の筋電位を計測する手法を用いた。本手法は、視聴者の笑いの初期動作を素早く検出できるため、視聴者の笑いに同調させてラフトラックを再生する事が可能である。

On television show, we are familiar with artificial sound of laughter so called “canned laughter” or “laugh track”. It generally has an enhancement effect of human’s laugh. However, if the sound is played when the user dislike the contents, it works negatively. To cope with this problem, we propose a system that produces the laugh track synchronized with the user’s laugh motion. We use a myoelectric signal from diaphragmatic muscle to detect initial laugh, and dolls around the user to produce laugh sound. We speculated that although initial laugh trigger from the user is necessary, the system still can effectively enhance the laugh activity, and even affect the  subjective quality of the contents.~
--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=sakura_device.mpg,MOVIE);
--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=laugh%20enhancement%20system.mp4&refer=research,MOVIE2);


&aname(Speaker);
**超高品位触覚提示装置 (Emotional Touch -A novel tactile interface completing with extremely high temporal bandwidth-) 2008- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=speaker03.jpg,right,around,nolink,320x240);

本研究は,従来の触覚提示の主目的であった記号的な情報提示とは一線を画す,感性的な触覚情報の提示を目指すものである.そのため,従来研究で重要視された空間解像度を捨て,代わりに従来研究で犠牲となっていた時間的なダイナミックレンジを極限にまで高めるという手法を用いている.システムは,音響スピーカを用いた極めて簡素な構成であり,小型・軽量・低コスト小型化が可能である.本システムを用いて,人の手に触れるあらゆる機器での豊かな触覚コミュニケーションを実現する.

We proposed and developed a novel interface to display high-quality tactile information by improving the temporal bandwidth extremely.
The system is composed of two oppositely arranged speakers. A user holds the speakers in between his/her both hands while the speakers vibrate air between the speakers and the palms. The user feels suctioning and pushing sensations to the palms from the air pressure. Spatial distribution of the pressure is uniform and the user can feel pure force without any feeling of edges. As the speaker has a potential to present tactile sensation of very wide frequency range, we can present many types of high-quality tactile feeling, such as liquid, some small objects and living matter. Additionally, we implemented several interactions between the display and the user by using force sensor and acceleration sensor, which enabled us to experience emotional feeling.

--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=EmotionalTouch_10_320x240.MP4,MOVIE(320x240));
--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=EmotionalTouch_10_640x480.MP4,MOVIE(640x480));

&aname(Pencil);
**鉛筆削りに着目した触覚的心地良さ提示デバイス(A Simple Rotational Tactile Display to Present a Sensation of Sharpening a Pencil) 2008-[#g959f576]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=pencil_device.jpg,right,around,nolink,320x240);

触覚的心地よさを提示する触覚デバイスを扱う. 従来の触覚デバイスは主に触覚的に環境情報を取得する事を目的として研究された. 一方で触覚には心地よさ, 気持ち悪さといった情動を生起するようなものも存在する. 本研究では手動鉛筆削りを使用する際に心地良さが得られることに着目した. 手動鉛筆削りの感覚を記録, 再生することで心地良さ提示を再現する.  

This study proposes a simple 1 DOF rotational haptic display that achieves endless sharpening of a pencil. Many haptic applications have been proposed to present shapes, elasticity, viscosity, and other physical properties of the environment. While these are important to support many tasks such as teleoperation and computer aided design, we focus on the use of haptic display for amusement. We paid special attention to the feeling of “addictive comfortableness” induced by haptic stimulation. We take “pencil sharpener” as a typical example, because it is obviously comfortable and has addictiveness. Moreover, the mechanism is relatively simple because the sensation could be generated through 1 DOF haptic display. 

&aname(togetoge);
**皮膚接触面の形状変化による疑似的な力覚提示手法 (A pseudo force sensation induced by changing skin contact shape and texture) 2008-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=toge.jpg,right,around,nolink,320x140);

地面に支点がないポータブルデバイスにとって、ユーザに力覚を提示することは困難である。一方、我々の力感覚は皮膚感覚によって錯覚させられることが知られている。そこで、皮膚感覚の変化による擬似的な力覚提示手法を提案する。指が触れている部分を剣山状に変化させることで、皮膚のひずみエネルギーを増やし、皮膚の接触力が変わらなくても力が強くなったように錯覚させることを目指す。

As the portable device is not grounded, presentation of true external force is quite difficult. In this paper, we propose a new pseudo-force presentation method by changing skin contact shape and texture. While total contact force is preserved, total strain energy is increased, which may induce perception of increased force. 

&aname(Phantom);
**ファントムセンセーション基礎特性の拡張可能性 (Unknown Charactors of Phantomsensation) 2008- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=ph_pict1.jpg,right,around,nolink,320x240);

触覚ディスプレイと呈示対象は空間的に近接している必要があるものが多い.このことが呈示対象者に肉体的な負担や制約もたらすことも多く実用上の1つの大きなネックとされてきた. 一方,ファントムセンセーション(PhS)と呼ばれる離れた2点の触覚振動刺激の中間地点に実刺激によらない刺激像が生じる錯覚現象が知られている.PhS用いて前記の制約を克服する試みはこれまでも行われており,一定の成果が報告されてきた.しかしPhS自体の認知特性に関する報告は未だ少ない.そこで本研究は未だ調査されていないPhSの諸特性について調査し,PhS生起原理の解明およびPhSの応用可能性の拡大を目指すものである.

Phantom Sensation (PhS) is a well known tactile illusion that we can feel tactile image in between the two remotely located vibrators. The illusory image’s intensity is proportional to that of the physical vibration, and position of the image is controllable (center of mass of the two vibrations). PhS may have the potential to dramatically reduce the number of stimulators, if not close to nothing.
Physiological principle underlying PhS is still unobvious, and physical parameters necessary for the PhS was not fully persued. Therefore, there remains possibility that we can find unknown characteristics of PhS, which may overcome the current limitation of the use of the phenomenon. This is why we treat this classical phenomenon.

&aname(miminavi);
**耳を引っ張る歩行誘導デバイスの提案 (Device for Walking Navigation by Pulling Ears) 2008- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=mimi_pulling.jpg,right,around,nolink,320x240);

本研究では触覚を用いた歩行誘導装置について扱う. 従来のナビゲーションシステムは主に視覚, 聴覚へ情報を提示していた. しかしこれら二つの感覚は歩行時に外部の情報を得るためにも重要な感覚であるため, 他の感覚器を利用することが望ましい. 触覚においては腕を牽引されることが直観的なナビゲーション手法だと考えられるが, 従来提案されたシステムでは外力を発生させることができず, 不自然感が残ってしまっている. 我々は腕を引っ張られる手法と同様の直観的かつ簡便な性質を持つ歩行誘導手法として, 耳を引っ張ることを考えた. 耳を引っ張られる状況では, 手を引く場合と比べて少ないエネルギーで誘導可能となる. 

We propose a new type of navigation interface for walking. Previous works on navigation mainly used visual and acoustic sensation, which is not intuitive. Some other works used tactile stimulation onto the hand or the arm to generate pseudo pulling force. But the device tended to become large and heavy. We propose to use ear, instead of hand and arm to generate the sensation of being pulled. Being pulled the ear for navigation is a common situation when we were children and hence, the sensation
should be quite intuitive. At the same time, the amount of necessary force is quite small.

--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=Pull-Navi.mp4,MOVIE);
[&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=a19-kojima.pdf&refer=publications,,pdf);]

&aname(wind);
**皮膚を局所的に刺激するウェアラブル風覚提示デバイス (Study on Wearable Wind Display for Local Skin Stimulation) 2008- [#k375c10f]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=wind_device.jpg,right,around,nolink,320x240);

風覚を提示するデバイスを検討する. 従来の風覚ディスプレイの多くは環境に固定されており, ユーザと風源との間に距離が存在していたことから到達するまでに風が拡散してしまい, 局所的な提示が不可能であった. また, ユーザの位置を限定してしまっていた. 本研究ではユーザの皮膚近傍にウェアラブルな形態で風源を設置することにより風の拡散を防ぎ, 局所的に風を提示する. 

We study a device to present wind sensation. Previous wind displays used array of fans that were fixed around the visual display. The distance between the fans and the user is relatively large, making it difficult to display “local” wind, such as someone’s breath on the neck. We propose a local wind display that is a new type of wearable device. 

*2007- [#e65006ee]

&aname(Handle);
**ハンドル把持における触覚提示に関する研究 -局所的に相殺する水平ひずみ群による圧覚提示- (A Study on Tactile Display through Grasping Handle -Pressure Presentation by Locally Balanced Horizontal Strains- ) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=Handle.jpg,right,around,nolink,320x240);



本研究ではハンドル把持における触覚提示を扱う。従来のハンドルに対する触覚提示が主に振動によるアラートを目的としていたのに対して、圧覚をも提示することで、把持力の誘導等、操作感の制御を可能とする。ハンドルを細かく輪切りし、隣り合った2輪を互いに逆向きに回転させる。皮膚表面では局所的には水平ひずみを生じるが、二点弁別閾内に提示された逆方向の歪みの方向は知覚できない為、圧覚として知覚されると考えられる。

We study a tactile display on grasping handle. Previous works on tactile display on handle utilized vibration to alert the user. On the contrary, we propose to display pure pressure. As the user’s grasping force is unconsciously controlled by the pressure sensation, presentation of pressure may have the ability to navigate proper grasping force intuitively. To achieve this goal, we cut the handle into round slices, and rotate them. Directions of the adjacent rotations are set opposite with each other, so that the horizontal distortion is locally cancelled. As the spatial resolution of horizontal distortion is much larger than that of pressure, we cannot perceive the direction of rotation, while we perceive pure pressure.

&aname(zipper);
**ジッパー開閉感覚の解析および提示 (Analysis and presentation of zipper opening and fastening sensation ) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=zipper00.jpg,right,around,nolink,320x240);


ジッパーは、「開ける/閉める」「離す/繋ぐ」という面操作インタフェースとしての一般性を持っていると同時に、音や触覚的手がかりによって人間に直観的な情報を提示できる、優れたインタフェースである。しかしジッパーの感覚そのものに焦点を当てた研究は少ない。
そこで本研究では、力覚・触覚・聴覚の面からジッパーの開閉感覚を記録し、さらにその感覚を再生及び任意の感覚を提示する装置・システムの検討、実装を行っている。


A zipper is an interface. It not only has the generality as a 2D operation interface, but it also has an outstanding aspect of multimodal interface since it can present intuitive information by acoustic, tactile, and visual keys. However, there were few works on the sensation of the zipper itself. The goal of this research is to record and replay the opening and fastening sensation of a zipper through acoustic, tactile, and visual modalities. This paper focuses on the recording of tactile sensation of the zipper.

&aname(harakiri);
**仮現運動を利用した”ばっさり感”提示の研究 (Presentation of a sense of “Bassari” by using tactile and acoustic apparent movement ) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=harakiri.gif,right,around,nolink,320x240);

本研究では、刀によってバッサリ切られる感覚の提示方法を提案する。振動子を複数個取り付けた腹巻を製作し、仮現運動が生起する間隔で振動子を順に振動させると同時に「グサッ」という効果音を同様に移動させることで“ばっさり感”提示を可能にした。
この腹巻を装着した被験者に触刺激と音刺激を様々な速度条件の下で与え、触覚および聴覚刺激が融合して心地よい“ばっさり感”を生じる条件を検証している。

We propose a method of presenting the sense of being cut by the sword, or “Bassari”. It was enabled by displaying the motion of acoustic and tactile sensation. Arrays of speakers and vibrators are put inside a berry-band. In this paper, subjects who wear this berry-band were presented a vibrating stimulus and a auditory stimulus under various velocity conditions. We investigated under what conditions the two different modality were unified to one “Bassari” feeling.

--[[Project Page:http://www.junji.org/slashed/]]

&aname(kao765);
**周辺視ディスプレイを用いた自己運動感覚の増強 (Augmented reality for sense of self-motion with peripheral display) 2007- [#r257d89b]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kao765.jpg,right,around,nolink,320x240);

屋内でルームランナー等を利用して運動した場合、視覚的な運動情報が少なく、屋外で運動した場合と比べ自己運動感覚に乏しい。この問題に対して我々は、視野の周辺部に対して積極的にオプティカルフローを提示することによる、自己運動感覚の増幅を提案する。これにより、屋外におけるランニングと同程度以上の爽快な運動を行い得ると考えられる。

The running is one of the most popular exercises in the world. People can do running in room by using the treadmill. However, running with treadmill is often short of sense of self-motion when compared with running outside. One of the main reasons of this problem is thought to be the short of visual information from peripheral view. In this research, we propose a system that could augment sense of self-motion by displaying optical flow to peripheral view area. Then it should be able to feel athletes, including runners with treadmill, as if they have more ability for the exercise. In this article, we show our device and report the concept of this system.

--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&pcmd=open&file=souti-full.m1v&refer=research,,MOVIE);

&aname(camera);
**空中に保持したカメラの感覚的スタビライゼーション (Sensory stabilization of handheld camera) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=camera.jpg,right,around,nolink,320x240);

カメラにとって古典的な問題であった「手ブレ」は、現在様々な補正技術により解決されている。しかし撮影の結果がブレないことと同等以上に、撮影操作中にブレないことを利用者が体感できることは重要である。そこで本研究では、ファインダ越しに見える画像の枠を、カメラの回転に合わせてロック・ロック解除する。さらに解除の瞬間に振動を与えることで、ロータリースイッチを回すような操作感をカメラに付与することを目指す。

"Motion blur" that is a typical problem for camera have been recently solved by various compensation technologies, such as mechanical compensation, electrical compensation, and computer vision technique. On the other hand, subjective “feeling of stability” during camera operation is almost as important as the resultant unblurred image. To achieve this goal, we propose to add a rotary-switch-like feeling on the handheld camera. We make “lock” and “release” states along the camera’s rotational axis both visually and haptically. The camera frame over the viewfinder is locked and released along the rotation, while haptic impulse is generated at the release moment. Through these techniques, the handheld camera is subjectively stabilized.


&aname(shuhenshi);
**周辺視ディスプレイを用いたフライトシミュレータにおける移動感の増強 (The peripheral display for enhancement of speed sensation for the Flight Simulator) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=shuhenshi.JPG,right,around,nolink,320x240);

PC上の簡易なフライトシミュレータにおいて、一般に画角が狭い等の理由により、移動感の獲得が困難になるという問題がある。条件によっては実機においても同様の問題が生じ、操縦に影響を及ぼす可能性がある。この問題に対し本研究では、周辺視野領域にディスプレイを配置し、積極的にオプティカルフローを提示することにより、移動感の増強を図る。

A conventional Flight Simulator game generally have a problem that we can hardly feel speed sensation due to narrow angle of view and short of acceleration sensation etc. . The same problem may occur while flying real aircraft. Then in this research, we describe about a peripheral display to enhance the speed sensation by running aggressive optical flow on the LED Matrix. In this report, We explain about the developed system and the result of evaluation.
&br;
&br;
&br;

&aname(GroupRobo);
**摩擦制御による群ロボットを用いたテーブルトップインタフェース(Tabletop Interface using Table's Circular Vibration and Contorollable Friction)2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=robo.JPG,right,around,nolink,320x214);

近年、コンピュータ中の情報を机上の実物体で現し、タンジブルメディアとする机上インターフェースが多く提案されている。しかし、従来の机上インターフェースの多くは、机上物体駆動のために机の下に大掛かりな装置を必要とし、また高速での駆動は難しかった。我々は磁性体の机自体を水平振動させ、物体側に取り付けた電磁石の電流を振動に同期させることで、物体を任意方向に駆動するシンプルな群ロボットシステムを提案する。

To overcome the limitation of visual information display, some works have proposed to use desktop “tangible” media. However, to drive the physical media on the desk, most works require a large scale device under the desk. Furthermore, high-speed motion was difficult. We propose a simple group robots system that utilizes horizontal vibration of the desk. The robot is a simple electromagnet, which is powered on and off according to the desk’s vibration phase.

--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=GunRoboDance.mpg,,Movie of the first prototype version. Presented at VRSJ'07(Virtual Reality Society of Japan)(in Japanese));
--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=introduction.mpg,,Movie of the second prototype version. Presented at WISS'07(Workshop on Interactive Systems and Software)(in Japanese));
--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=research&openfile=Tabletop-interface-fukushima.m1v,,Movie of the third prototype version. Presented at WISS'07(Workshop on Interactive Systems and Software)(in Japanese));&color(red){''Interactive Demonstration Award!!''};
--&ref(https://kaji-lab.jp/en/index.php?plugin=attach&refer=research&openfile=chi2008.m1v,,Movie of the fourth prototype version. Presented at CHI'08);

&aname(kehai);
**音響的な影の呈示による気配感覚の増強(Augmentation of atmosphere by presenting of acoustic shadow)2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=kehai-abst.jpg,right,around,nolink,320x240);

気配を「自分の周囲を視覚に拠らず知覚する能力」と定義する。視覚障害者の気配知覚の先行研究から,気配の主要因が環境雑音に基づいた周囲の音場変化の知覚であることが確かめられている。障害物を検出するレンジファインダーと雑音を提示するヘッドフォンを用いて、障害物方向からの雑音を極端に消去した音場を提示させるという単純な方法で、気配を察知する勘が鋭くなったかのような錯覚を生じさせるインタフェースを提案する。

We propose a device that lets us feel the surrounding atmosphere intuitively. In this paper, the “atmosphere” is defined as the ability to perceive surrounding environment, not by sight. It is known that the key factor of this ability is perception of “acoustic shadow,” which is a decrease of ambient noise due to obstacles. With a headphone that presents the noise and the range finders that detect the obstacle, the surrounding noise from all direction, except from the direction of the obstacle, is presented. As a result, the user mistakenly perceives the “atmosphere” from the obstacle, while he/she does not notice the decay of sound.

&aname(hunger);
**側頭部圧迫による反射運動の研究 (A study of reflex motion by temporal pressure ) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=hanger.JPG,right,around,nolink,320x240);


針金製のハンガーを横向きにして側頭部を挟むような形で頭に装着すると、期せずして頭部が回転し横を向いてしまう。この現象そのものはよく知られているが、具体的な身体的機序は解明されていない。本研究は、ハンガー現象の原理を解明し制御する方策について検討することで、将来的にヒトが知覚出来ない程度の微細な触覚刺激によって頭部位置を任意の方向に誘導する等の触覚インターフェース開発の可能性を示すものである。


When a head is equipped with a hanger made of wire sideways, and it’s temporal region is sandwiched by the hanger, the head rotates unexpectedly. Although this phenomenon itself is known well, the mechanism that underlies this phenomenon is not known. This paper aims to understand the mechanism, and further show the possibility to utilize the phenomenon as a human interface.
&br;
&br;
&br;
&aname(bure);
**人間振動式ブレ補正技術の開発 (Stabilization method of motion blur by using continuous vibration ) 2007-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=bure.jpg,right,around,nolink,320x240);


小型カメラのように手で持って利用する撮影機器では手ブレの問題は非常に重要である.従来多くのブレ補正技術が提案されてきたが、特に露光時間が長くなる状況においては人間の不規則なブレを完全に補正することは難しい。
本研究では、人間の不規則なブレを補正するのではなく、人間に継続的な既知の振動を与えることでブレの周波数幅を狭め、あらかじめ提示する振動周波数に合わせて振幅と位相のみ調整した振動を装置に与えることでブレを補正する新たな技術を提案、実装する。


There are various compensation techniques for solving motion blur problem such as optical, mechanical, electrical, and image processing method. These techniques can make image better on the situation of interior illumination. However, it is difficult to compensate such kind of blur on the situation of darkness because of long exposure time. So we propose new stabilization method to solve this problem. In our method, the system presents continual vibration to user’s hands in order to suppress irregular vibration. As the known frequency vibration can be cancelled easily, resultant motion blur will be significantly reduced.

*2006- [#j07304e7]

&aname(FRS);
**額に装着する電気触覚ディスプレイ(Forehead Electrotactile Display) 2006-[#mada00e7]
#ref(https://kaji-lab.jp/ja/index.php?plugin=ref&page=research&src=FRS.jpg,right,around,nolink,320x240);

本研究の目的は視覚障害者が日常的に携帯可能な視触覚変換装置の実現である.従来の多くの視触覚変換装置と異なり,「額」を用いることで装着者に眼前の世界を座標変換無く直感的に提示することが可能となった.また従来提案された額触覚提示では機械的な提示手法が用いられていたが,我々は電気刺激を用いることで多点,高密度の触覚提示部を軽量,薄型に構成することに成功している.

Forehead electrotactile display was proposed as a display for vision substitution system for the visually impaired people. Forehead skin was chosen for stimulation in consideration of usability. An electrotactile display was used so that the system becomes small and durable. Our prototype display was composed of 32 by 16 electrodes, with 3mm interval. The psychophysical experiment showed that the display has comparable spatial resolution as mechanical tactile display.

--&ref(https://kaji-lab.jp/ja/index.php?plugin=attach&refer=people%2Fkaji&openfile=FRS_siggraph_final.mpg,,MOVIE);
--[[Partner Company:http://www.eyeplus2.com]]